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concentration; s.b.s., standard buffer solution; SN-6, 2-[[4-[(4Nitrophenyl) methoxy] phenyl] 

methyl]-4-thiazolidinecarboxylic acid ethyl ester; Vm, membrane potential; WT, Wild Type. 
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Abstract 

It is known that glutamate (Glu), the major excitatory amino acid in the central nervous system, can 

be an essential source for cell energy metabolism. Here we investigated the role of the plasma 

membrane Na+/Ca2+ exchanger (NCX) and the Excitatory Amino Acid Transporters (EAATs) in 

Glu uptake and recycling mechanisms leading to ATP synthesis. We used different cell lines, such 

as SH-SY5Y neuroblastoma, C6 glioma and H9c2 as neuronal, glial and cardiac models, 

respectively. We first observed that Glu increased ATP production in SH-SY5Y and C6 cells. 

Intriguingly, pharmacological inhibition of either EAAT or NCX counteracted the Glu-induced 

ATP synthesis. Furthermore, Glu induced a plasma membrane depolarization and an intracellular 

Ca2+ increase and both responses were again abolished by EAAT and NCX blockers. In line with 

the hypothesis of a mutual interplay between the activities of EAAT and NCX, 

coimmunoprecipitation studies showed a physical interaction between them. We expanded our 

studies on EAAT/NCX interplay in the H9c2 cells, used as cardiac model. H9c2 expresses EAATs 

but lacks of endogenous NCX1 expression. Interestingly, Glu failed to elicit any significant 

response in terms of ATP synthesis, cell depolarization and Ca2+ increase unless a functional NCX1 

was introduced in H9c2 cells by stable transfection. Moreover, these responses were counteracted 

by EAAT and NCX blockers, as observed in SH-SY5Y and C6 cells. Collectively, these data 

suggest that plasma membrane EAAT and NCX are both involved in Glu-induced ATP synthesis, 

with NCX playing a pivotal role. 
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Introduction 

Glutamate (Glu), the major excitatory amino acid in the central nervous system of mammals, is 

involved in important brain functions such as memory and learning (Meldrum, 2000). Glu is also 

involved in brain energy metabolism, which is of fundamental importance to grant neuronal 

functions and survival (Hertz and Dienel, 2002). It has already been established that Glu per se is 

able to activate neuronal and glial energy metabolism (Hertz and Hertz, 2003; Magi et al., 2012; 

Panov et al., 2009). After being picked up by astrocytes/neurons, Glu can be converted to -keto-

glutarate that, as an intermediate of the Krebs cycle, can increase energy metabolism (Amaral et al., 

2011; Olstad et al., 2007). The metabolic fate of Glu in the cells is influenced by its extracellular 

concentration as observed in astrocytes in which Glu is preferentially metabolized via Krebs cycle 

when its extracellular levels rise up to the low millimolar range (McKenna et al., 1996). Indeed, 

during synaptic stimulation, Glu can reach millimolar concentrations at the synaptic cleft (Clements 

et al., 1992; Danbolt, 2001; Nyitrai et al., 2006). 

The extracellular concentration of Glu is spatially and temporally defined by a very efficient 

reuptake system located both in neuronal and glial cells, and composed of highly specialized 

proteins, the Excitatory Amino Acid Transporters (EAATs) (Danbolt, 2001). EAATs contribute to 

neurotransmitter recycling and prevent the extracellular Glu concentration from rising to neurotoxic 

levels (Maragakis and Rothstein, 2004). Recent studies indicate that EAATs may not be a mere 

glutamate “sink” that terminate glutamatergic synaptic transmission, but they can play a more 

important role in the control of cell energy metabolism than it was recognised before. In this regard, 

an association of Glutamate–Aspartate Transporter (GLAST) and Glutamate Transporter 1 (GLT-

1), two members of EAATs family, with glycolitic enzymes and mitochondria has been reported 

(Bauer et al., 2012; Genda et al., 2011). Moreover, EAATs mitochondrial immunoreactivity was 

reported for three EAATs, namely GLAST (Magi et al., 2012; Ralphe et al., 2004), GLT-1 and 

Excitatory Amino Acid Carrier 1 (EAAC1) (Magi et al., 2012): the latter one is specifically 
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involved in the Glu-dependent stimulation of ATP production in mitochondria isolated both from 

neuronal and glial cells (Magi et al., 2012).  

Since EAATs transport Glu using the favorable Na+ gradient (Tzingounis and Wadiche, 2007), a 

mechanism able to restore the transmembrane Na+ gradient after Glu entry is required. Recent 

studies have suggested that the Na+/K+-ATPase, the antiporter enzyme which maintains the Na+ and 

K+ ion gradients across the membrane, may regulate Glu uptake via EAATs (Bauer et al., 2012; 

Genda et al., 2011; Rose et al., 2009). However, a variable but significant component of the Na+-

dependent Glu transport activity is resistant to ouabain at concentrations (0.1 – 5mM) known to 

inhibit the rat Na+/K+-ATPase (Genda et al., 2011; Johansen et al., 1987; Rose et al., 2009; Volterra 

et al., 1994).  

Another transporter that could support Glu entry via EAAT is the Na+/Ca2+ exchanger (NCX). NCX 

catalyzes the bidirectional and electrogenic exchange of 3 Na+ and 1 Ca2+ across the plasma 

membrane, operating either in Ca2+-efflux/Na+-influx mode (forward mode) or Ca2+-influx/Na+-

efflux mode (reverse mode) (Blaustein and Lederer, 1999; Torok, 2007). It has been already 

proposed that in astrocytes Glu and Na+ entry via EAAT induces a Ca2+ response due to the reverse 

mode of plasma membrane NCX (Kirischuk et al., 2007; Verkhratsky, 2010). In a recent study we 

found that EAAT and NCX also localize within brain mitochondria and that EAAC1 and NCX1 

exist as a macromolecular complex that allows Glu entry into the matrix, enhancing ATP 

production (Magi et al., 2012). In this paper we report findings suggesting that plasma membrane 

EAAT and NCX are involved in Glu-induced ATP synthesis in neuronal, glial and cardiac cells, 

and that NCX plays a pivotal role in this phenomenon. 
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Materials and Methods 

Cell Cultures 

Cell lines (purchased from the American Type Culture Collection, Manassas, VA) were cultured as 

monolayer in polystyrene dishes (100 mm diameter) and grown in RPMI 1640 medium (SH-SY5Y 

cells) or DMEM medium (C6 and H9c2 cells) (Invitrogen, Carlsbad, CA) containing 10% heat-

inactivated fetal bovine serum (Invitrogen), 1% L-glutamine (200 mM) (Invitrogen), 1% sodium 

pyruvate (100 mM) (Invitrogen), 100 IU/ml penicillin (Invitrogen), and 100 μg/ml streptomycin 

(Invitrogen). Cells were grown in a humidified incubator at 37°C in a 5% CO2 atmosphere.  

Generation and characterization of H9c2 cells stable expressing NCX1  

H9c2 Wilde Type (WT) were plated at a density of 1.5×105 cells/cm2, followed by culture in 

DMEM with 10% FBS. After 24 hours H9c2 cardiac myoblast were transfected with pcDNA3.1(+)-

NCX1 (kindly provided by Dr K. D. Philipson) carrying the geneticin (G418) resistance gene, by 

using Lipofectamine reagent according to manufacture instructions. After additional 24 hours, cells 

were cultured with selection-medium containing G418 at the concentration of 500 µg/ml until 

control (untransfected) cells died completely. Individual foci from the transfected cells were then 

selected, subcultured, and transferred to other plates for further propagation. Clonal cells were 

cultured under the G418 selection-medium until a stable cell line (named H9c2-NCX1) was 

obtained, as revealed by Real Time-PCR, immunofluorescence analysis (data not shown) and 

western blot. For Real-Time the following primers were used: forward 5’-

GCTCTGGTTCTGGAGGTTGATG-3’ and reverse 5’-TTCTCCGGATGCTTCTGCTT-3’. NCX1 

activity was evaluated in FLUO-4 loaded cells using a superfusion protocol designed to evoke Ca2+ 

uptake through the reverse mode. Briefly, H9c2-WT or H9c2-NCX1 cells were initially superfused 

with an extracellular solution containing (in mM) NaCl 140, KCl 5, HEPES 20, CaCl2 2, MgCl2 1, 
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glucose 10. Then, NCX1 reverse mode was evoked by exposing the cells to a Na+-free solution 

containing (in mM) LiCl 140, KCl 5, HEPES 20, CaCl2 2, MgCl2 1, glucose 10. pH was adjusted to 

7.1 in the Na+-based and Li+-based solutions with NaOH or LiOH, respectively. None of the H9c2-

WT cells analyzed showed a Ca2+ response as observed in H9c2-NCX1 cells.  

Antibodies 

NCX1 protein was detected by using a commercially available mouse monoclonal IgG antibody 

(R3F1, Swant, Bellinzona, Switzerland, dilution 1:500). The following primary antibodies were 

used to detect EAATs: mouse anti-EAAC1 (Chemicon International, CA, USA, dilution 1:1000) 

(Castaldo et al., 2007; Levenson et al., 2002), rabbit anti-GLAST and rabbit anti-GLT1 (Castaldo et 

al., 2007) (both purchased from Alpha Diagnostic International and used at 1:1000 dilution). 

Western blot and coimmunoprecipitation studies 

Experiments were performed on whole lysates and plasma membrane crude fractions both from 

isolated brain tissue and continuous cell lines (i.e. SH-SY5Y human neuroblastoma, C6 rat glioma, 

H9c2 cardiac myoblast and H9c2 cells stably expressing NCX1).Whole lysates were obtained using 

standard techniques and a cell lysis solution containing (in mM): NaCl, 150; Tris-HCl (pH 7.4), 10; 

EDTA (pH 8.0), 1; SDS 1%, and a protease inhibitor cocktail mixture (Roche Diagnostics) while 

plasma membrane crude fractions were obtained as previously described (Castaldo et al., 2007). 

Briefly, cells and brain were homogenized in 6 vol. of ice-cold homogenizing buffer: 4 mM Tris–

HCl, pH 7.4; 0.32 M sucrose, 1 mM EDTA; 0.25 mM dithiothreitol; protease inhibitor cocktail 

mixture tablets (Roche Diagnostics, Milan, Italy). Homogenates were centrifuged 1000×g at 4◦C for 

15 minutes, and supernatants were then centrifuged at 100,000×g at 4◦C for 1 hour to obtain the 

crude membrane fraction. The pellet was resuspended in homogenizing buffer and stored at −70◦C 

for immunoblotting.  
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Cell membrane proteins were immunoprecipitated by using commercially available mouse 

monoclonal IgG antibodies directed against EAAC1 (1:50; Chemicon International) (Proper et al., 

2002; Yu et al., 2006) and NCX1 (R3F1, 1:50; Swant) (Minelli et al., 2007). To recover the 

immunocomplexes, samples were incubated with A-Sepharose beads (GE Healthcare). 

Proteins were separated by SDS-PAGE and transferred electrophoretically to a PVDF membrane 

and then incubated with the appropriate primary antibody. Immunoreactions were revealed by 

incubation with secondary antibody conjugated to horseradish peroxidase (Santa Cruz, CA, USA) 

(dilution 1:1000), for 1 hour at room temperature. An enhanced chemiluminescence detection 

system (ECLPlus; Amersham Biosciences) was used to detect bound antibodies. Images were 

captured and stored on a ChemiDoc station (BioRad, Milan, Italy), and analysed with the Quantity 

One (BioRad) analysis software (Castaldo et al., 2007). 

 

Real-time confocal imaging 

Measurement of membrane potential (Vm). SH-SY5Y, C6 and H9c2 cells grown for 18 hours on 

poly-L-lysine-coated glass coverslips were loaded for 1 hour at 37°C with the fluorescent anionic 

dye bis (1,3-dibutylthiobarbituric acid)-trimethine oxonol (bis-oxonol) 1 M (Molecular Probes, 

Eugene, OR), before each experiment (Ward et al., 2007). The dye is lipophilic and increases or 

decreases in fluorescence on depolarization or hyperpolarization, respectively. Importantly, the 

negative charge on bis-oxonol prevents accumulation in mitochondria; therefore, the dye distributes 

across cell membranes according to the Vm, giving a reliable measurement of relative changes in 

Vm (Mohr and Fewtrell, 1987). After bis-oxonol loading, cells were washed and transferred to a 

microscopy chamber in standard buffer solution (s.b.s.) in the presence of 1 M bis-oxonol. The 

dye was allowed to equilibrate for an average of 5 minutes, after which a stable baseline was 

obtained. Cells were then treated with the indicated compounds. Fluorescence was monitored with 

excitation at 530 nm and emission at 560-585 nm. Confocal images were obtained using the 510 

LSM microscope equipped with a META detection system and a 20× objective. Illumination 
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intensity was kept to a minimum (0.1–0.2% of laser output) to avoid phototoxicity; the pinhole was 

set to give an optical slice of ~1 µm. For data analysis fluorescence was expressed as ratios (F/F0) 

of fluorescence counts (F) relative to baseline values before stimulation (F0). Data are presented as 

change in fluorescence relative to initial fluorescent value for each individual cell. Images were 

captured once every 30 seconds to avoid excessive bleaching of the dye. Cells on coverslips were 

then perfused with medium containing bis-oxonol (1 M) at constant rate and fluorescence imaging 

was started. When DL-threo-b-benzyloxyaspartic acid (DL-TBOA) (300 µM), 2-[[4-

[(4Nitrophenyl) methoxy] phenyl] methyl]-4-thiazolidinecarboxylic acid ethyl ester (SN-6) (3 µM) 

or 2-[2-[4-phenyl]ethyl] isothiourea mesylate (KB-R7943) (3 µM) were used, they were added 

starting from preincubation throughout the end of the experiments. Glu and/or added drugs were 

diluted in the perfusion medium and applied by switching the reservoirs of the perfusion system. 

Cell depolarization by perfusion with increased K+-containing extracellular solution was used as 

positive control (Supplemental Fig. 1). Na+ in the high K+ solution was reduced equivalently to 

maintain isosmolality. 

Analysis of cytosolic Ca2+ (Ca2+
cyt). Stock solutions of 5 mM Fluo-4 AM (Molecular Probes, USA) 

in DMSO (Molecular Probes, USA) were prepared and stored in aliquots at -20°C. SH-SY5Y, C6 

and H9c2 cells were incubated with Fluo-4 AM (concentration 5 M) for 50 minutes in the 

incubator at 37°C (Roychowdhury et al., 2006). Cells were superfused with standard buffer and 

were allowed to equilibrate for 15 minutes. For imaging of the Fluo-4 AM fluorescence, excitation 

light was provided by an argon laser at 488 nm and the emission was filtered with a 515 nm long 

pass filter. Images were acquired using the photomultiplier of the Zeiss LSM 510. 

Analysis of fluorescence intensity was performed off-line after the image acquisition by averaging 

the fluorescence intensity values within boxes overlying the cell somata using the imaging software 

of Zeiss LSM. Data were normalized and the averages of the intensities were calculated. 
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Analysis of ATP production 

ATP production was evaluated by using a commercially available luciferase-luciferin system 

(ATPlite, Perkin Elmer). 24 hours after plating in 96 multiwell plates (60,000/well), cells were first 

washed with s. b. s. containing (in mM): NaCl, 140; KCl, 5; CaCl2, 1; MgCl2, 0.5; HEPES, 10; and 

glucose, 5.5, pH 7.4, adjusted with Tris, and then exposed to Glu (0.5–1 mM) in s. b. s. for 1 hour at 

37°C. When ATP levels were evaluated in absence of extracellular Na+, NaCl was substituted with 

LiCl on an equimolar basis and pH was adjusted with LiOH. On the other hand, when experiments 

were conducted in Ca2+ free conditions, we substituted MgCl2 for CaCl2 in the extracellular 

solution. ATP levels were analyzed after incubation. All ATP data were normalized to the protein 

content. 

Statistical analysis 

Data were expressed as mean ± SEM. p<0.05 was considered significant. Differences among means 

were assessed by one-way ANOVA followed by Dunnet's post hoc test. 

Drugs and chemicals 

DL-TBOA, DL-threo-β-Benzyloxyaspartic acid; SN-6, 2-[[4-[(4Nitrophenyl) methoxy] phenyl] 

methyl]-4-thiazolidinecarboxylic acid ethyl ester and KB-R7943, 2-[2-[4-(4-

Nitrobenzyloxy)phenyl]ethyl] isothiourea mesylate were obtained from Tocris. All the other 

chemicals were of analytical grade and were purchased from Sigma. 
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Results 

 

DL-TBOA inhibited Glu-induced ATP synthesis 

As brain cell models, we initially used two cell lines, SH-SY5Y (neuroblastoma cell line) and C6 

(glioma cell line) to test the effect of increasing concentrations of Glu, and we found a dose-

dependent increase in ATP production with an EC50 of 101.4 and 303 M respectively. These 

values are closely related to the Km value for the Glu uptake estimated to be around 100 M 

(Danbolt, 2001). Interestingly, we found that the Glu-stimulated ATP synthesis in SH-SY5Y and 

C6 cell lines was counteracted by the non-transportable EAATs blocker DL-TBOA (Shigeri et al., 

2004; Shimamoto et al., 1998) (Figs. 1A and B). Furthermore DL-TBOA per se had no effect on 

ATP levels (Figs. 1A and 1B).  

 

Glu-induced plasma membrane depolarization 

Considering that substrate uptake by EAATs is electrogenic (Danbolt, 2001; Kanai et al., 1993), the 

exposure of cells to increased Glu concentrations is expected to elicit a significant plasma 

membrane depolarization as a consequence of Na+ accumulation. This hypothesis was tested by 

real-time confocal videoimaging studies in cells loaded with the selective indicator of plasma 

membrane potential bis-oxonol (Parks et al., 2007). Exposure to Glu resulted in a significant 

depolarization both in SH-SY5Y and C6 cells (Figs. 2A-2D). In SH-SY5Y cells the increase in bis-

oxonol fluorescence intensity was higher than that observed with high K+ evoked depolarization 

(Supplemental figure 1). At the present, we can speculate that this effect may depend on the cell 

type used. In line with previous results, in both cell lines, the depolarization was completely 

counteracted by DL-TBOA, confirming the key role of Na+/Glu co-transport in this response (Figs. 

2A-2D). 
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Involvement of NCX in Glu-induced ATP synthesis 

Since plasma membrane EAATs co-transport Na+/Glu, the maintenance of the Na+ gradient is 

fundamental to their activities. We previously showed that in brain mitochondria Glu entry via 

EAAT requires a functional mitochondrial NCX (specifically NCX1) (Magi et al., 2012). 

Considering that NCX transporters are also expressed on cellular surface (Minelli et al., 2007; 

Torok, 2007), we tested the idea that an equivalent functional interaction between EAAT and NCX 

also exist for Glu entry into the cells. As shown in Figs. 2A-2D blockade of NCX conductance with 

KB-R7943 and SN-6 (Niu et al., 2007; Watanabe et al., 2006) completely prevented the Glu-

induced depolarization in SH-SY5Y and C6 cells. In addition, we found that the two NCX 

inhibitors completely prevented Glu-induced ATP synthesis (Figs. 1C and 1D). Collectively these 

data suggest that NCX activity is critical for Glu-induced ATP synthesis. Membrane depolarization 

and intracellular Na+ accumulation observed during Glu exposure may favour the reverse mode of 

operation of NCX which in turn will tend to bring Ca2+ into the cytoplasm (Rojas et al., 2013). 

Therefore, we measured [Ca2+]cyt in SH-SY5Y and C6 cells before and after Glu exposure. Glu 

significantly increased [Ca2+]cyt both in SH-SY5Y and C6 cells (Figs. 3A-3D). This effect was 

completely abolished by DL-TBOA and by the two NCX inhibitors, KB-R7943 and SN-6 (Figs. 

3A-3D), confirming a close functional relationship between NCX and EAAT.  

Finally, we found that all the pharmacological inhibitors (DL-TBOA, SN-6 and KB-R7943) had no 

effect on plasma membrane potential (Figs. 2E and 2F) and [Ca2+]cyt (Figs. 3E and 3F).  

 

Plasma membrane EAAT and NCX: physical interaction 

We hypothesized that the functional interaction between NCX and EAAT could be consistent with 

their physical interaction. In a previous study (Magi et al., 2012) we demonstrated a physical link 

between NCX1 and EAAC1 within mitochondria, where the two transporters cooperate in the Glu-

stimulated ATP synthesis. Since EAAC1 is the EAATs isoform predominately expressed in SH-

SY5Y and C6 cells (Fig. 4A; (Magi et al., 2012)), we speculated that a similar relationship could 
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exist on the plasma membrane. Coimmunoprecipitation studies performed on membrane protein 

fractions revealed a strong NCX1 immunoreactivity in the EAAC1 immunoprecipitates and, in line 

with this result, EAAC1 was pulled down by NCX1 antibody on reverse immunoprecipitation (Figs. 

4B and 4C). 

 

Plasma membrane EAAT and NCX functional interaction in cardiac cells 

Glu is an important substrate for the intermediary metabolism not only in the brain but also in other 

organ such as the heart (Dinkelborg et al., 1996). Several studies have proposed that Glu plays an 

important role in the recovery of cardiac oxidative metabolism after ischemia (Kugler, 2004; 

Svedjeholm et al., 1996; Vanky et al., 2006). Similar to what observed in neuronal and glial cells, 

such metabolic response to extracellular Glu can only take place if cardiac cells express on their 

sarcolemma an efficient uptake system. Indeed, functional EAATs are expressed in cardiomyocytes 

(King et al., 2001; Kugler, 2004). We therefore hypothesized that also in heart the observed 

metabolic response elicited by Glu influx via EAAT could be regulated on cell surface by the 

cardiac isoform NCX1 (Menick et al., 2007; Shigekawa and Iwamoto, 2001). To test this 

possibility, we decided to use as cardiac model the rat heart derived H9c2 myoblasts (Menard et al., 

1999). In preliminary experiments, we found that our H9c2 clone expresses three EAAT isoforms 

(GLAST, GLT1 and EAAC1) but lacks of endogenous expression of NCX1 (Fig. 5A), even after 7 

days differentiation in 1% FBS or 10 nM retinoic acid (Menard et al., 1999) (data not shown). In 

addition, in this cell line we failed to detect any significant response to Glu stimulation in terms of 

ATP production, plasma membrane depolarization and [Ca2+] cyt increase (Figs. 5B, 6A and 7A). 

We speculated that such unresponsiveness of H9c2 cells to Glu stimulation was due to the absence 

of NCX1. To confirm this, we decided to use our H9c2 cells (that we named H9c2-WT) and to 

generate an H9c2 clone (that we named H9c2-NCX1) by stable expressing a functional NCX1 (Fig. 

5A, see Materials and Methods). NCX1 expression enabled H9c2 cells to respond to Glu, being 

ATP production stimulated, plasma membrane depolarization induced and [Ca2+]cyt increased (Figs. 
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5B, 6A and 7A). Concerning membrane depolarization in H9c2-NCX1, the increase in bis-oxonol 

fluorescence intensity was lower than that observed in SH-SY5Y and C6 cells and than that 

observed in the same cell line with high K+ (Supplemental figure 1). We hypothesized that this 

effect may be related to specific cell type. Notably, both DL-TBOA and SN-6 counteracted all the 

Glu induced responses analyzed (Figs. 5C, 5D, 6C and 7C), but were without effects in 

unstimulated H9c2-NCX1 cells (Figs. 6B and 7B). Moreover, as observed in SH-SY5Y and C6 

cells, coimmunoprecipitation studies performed on H9c2-NCX1 membrane protein extracts 

revealed a physical interaction between EAAC1 and NCX1 (Fig. 5A). In this regard, H9c2-WT 

cells, lacking endogenous NCX1 expression, provided a nice negative control to confirm the 

specificity of such interaction. Hence we carried out coimmunoprecipitation studies on this cell line. 

When membrane protein extracts from H9C2-WT were pulled down with NCX1 antibody, no 

immunoreactivity for EAAC1 was detected. Consistently with this result, no signal for NCX1 

protein was detected when H9c2-WT protein membrane extracts were pulled down with EAAC1 

(Fig. 5A). 

 

Glu induced ATP synthesis: role of Ca2+ and Glu  

Our results showed that exposure to Glu was able to increase ATP synthesis in both neuronal and 

non neuronal cells trough the interplay between plasma membrane EAAT and NCX. We 

hypothesized a crucial role for NCX1, since by working on the reverse mode, it probably contribute 

to maintain the Na+ gradient required for the EAAT activity. At the same time, as a consequence of 

NCX reverse mode activity, we observed an increase in [Ca2+]cyt. that per se could represent a 

stimulus able to increase cellular ATP content through the activation of the mitochondrial Ca2+ 

dependent dehydrogenases (Denton, 2009). On the other hand, Glu per se is an important substrate 

that can be used by mitochondria to generate ATP. To definitely sort out these issues and clarify the 

mechanism underlying ATP production after Glu exposure, we tried to separately study the effect of 

Ca2+ and Glu.  
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To evaluate the role of Ca2+ in absence of Glu, we measured the ATP content of C6, SH-SY5Y and 

H9c2-NCX1 cells after 1 hour exposure to a Na+ free extracellular solution, known to evoke NCX 

reverse mode, and, consequently, to induce a rise in [Ca2+]cyt ((Amoroso et al., 2000) and Fig. 5A). 

Conversely, to evaluate the role of Glu, we measured the ATP content of the same cell lines after 1 

hour exposure to Glu in absence of extracellular Ca2+. Interestingly, we observed that neither Ca2+ 

nor Glu were able to induce any significant increase in ATP content on their own. The increase in 

ATP synthesis occurred exclusively when cells were exposed to Glu in the presence of extracellular 

Ca2+ (Fig. 8). 
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Discussion 

The results of the present study showed that Glu (0.5-1mM) was able to increase ATP synthesis in 

SH-SY5Y (neuroblastoma) and C6 (glioma) cell lines used as model of neuronal and non neuronal 

cells, respectively. Both plasma membrane NCX and EAAT activities are required to elicit this 

metabolic response. This experimental evidence expanded our previous study in which we 

demonstrated a key role of the mitochondrial NCX and EAAT in Glu-induced ATP synthesis (Magi 

et al., 2012) and strengthened the earlier postulated role of Glu in brain energy metabolism 

(McKenna et al., 1996; Olstad et al., 2007). It is well known that as a neurotransmitter, the released 

Glu exerts its signalling function by interacting with specific receptors until it is removed from the 

extracellular fluid by the rapid uptake operated by EAATs (Danbolt, 2001; Kanai et al., 1993). The 

Glu taken up from the cells can be used as intermediary metabolite for ATP production (Hertz and 

Hertz, 2003; Panov et al., 2009) and, in this regard, a role for the EAATs-dependent uptake in brain 

cell energy metabolism has been also hypothesized (Bauer et al., 2012; Genda et al., 2011; 

Sonnewald et al., 1997), but at the moment scarce information are available on the role of EAATs 

in the metabolic response to Glu. Our results clearly showed that EAATs mediate Glu entry into the 

cells, leading to ATP production, since the non transportable EAATs inhibitor DL-TBOA 

(Anderson et al., 2001; Montiel et al., 2005; Shigeri et al., 2004; Shimamoto et al., 1998) 

completely prevented the metabolic response to Glu (Figs. 1A and 1B). EAATs are Na+-dependent 

transporters (Tzingounis and Wadiche, 2007) thus, consistently with the electrogenicity of EAATs 

Glu-uptake, a significant plasma membrane depolarization is expected to occur as a consequence of 

the Na+ entry. In line with this idea, we observed a Glu-induced and DL-TBOA-inhibited plasma 

membrane depolarization (Fig. 2). Because of the EAATs Na+ dependency, a mechanism is 

required in order to preserve the driving force provided by the transmembrane Na+ gradient after 

Glu entry. For this reason we tested the hypothesis that the plasma membrane NCX proteins could 

sustain EAATs activity by extruding the Na+ ions flowing into the cells with Glu. The blockade 
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with specific inhibitors, such as KB-R7943 or SN-6 (Niu et al., 2007; Watanabe et al., 2006), 

completely prevented plasma membrane depolarization and Glu-mediated ATP increase both in 

SH-SY5Y and C6 cells (Figs. 1C, 1D and 2A, 2B, 2C, 2D), confirming that NCX, by operating on 

the reverse mode, can restore the Na+ gradient and, consequently, sustain EAAT activity. If NCX is 

working on the reverse mode, then the Na+ extrusion from the cytoplasm should be coupled to a 

Ca2+ entry and exposure to Glu is expected to elicit an increase in [Ca2+]cyt. Confocal videoimaging 

experiments with Fluo4-AM substantiated this hypothesis (Fig. 3), providing further evidence for a 

key role of NCX in the Glu-induced ATP synthesis. Notably, such Ca2+ response due to the reverse 

operation mode of NCX, was completely counteracted by KB-R7943 or SN-6 (Fig. 3). Obviously 

DL-TBOA was also able to block the [Ca2+]cyt increase induced by Glu (Fig. 3). In this regard, 

Rojas and colleagues recently demonstrated that in rat cerebellar type-1 astrocytes the intracellular 

Ca2+ signal, induced by physiological concentration of the excitatory amino acid Glu and aspartate, 

is the result of the Na+ entry through EAAT, that activates the reverse mode of NCX leading to Ca2+ 

entry (Rojas et al., 2013). It is also interesting to note that previous morphological observations 

showed that both EAAT (Danbolt, 2001) and NCX (Minelli et al., 2007) localized in the terminal 

processes of astroglial cells.  

We have recently showed that EAATs are also expressed within mitochondria in various tissues 

(i.e. brain, heart) and cell lines (Magi et al., 2012). Such subcellular localization has a functional 

relevance, since these transporters contribute to the Glu-stimulated ATP synthesis (Magi et al., 

2012). Notably, the mitochondrial EAAT-dependent Glu entry route is regulated by mitochondrial 

NCX (Magi et al., 2012). In particular, we reported that this mechanism relies on the selective 

interaction between a specific EAATs subtype - EAAC1 - and a specific NCX subtype - NCX1 -. 

Based on these findings, we tested the hypothesis that EAAC1 (the main EAATs isoform expressed 

by our cell lines (Magi et al., 2012) and NCX1 could also interact at plasma membrane level. We 

conducted coimmunoprecipitation studies both in SH-SY5Y and C6 cell isolated membrane 
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fractions and, as showed in Fig. 4, we confirmed that NCX1 and EAAC1 associate even on cell 

surface as they do within mitochondria.  

Collectively, these findings represent one of the main strengths of this paper, supporting the idea of 

a general mechanism where the cooperation between NCX1 and EAAC1 sustains brain energy 

metabolism, cooperation that can be relevant especially when ATP production is critically 

compromised such as in ischemia. In fact, during an ischemic insult cells massively release Glu, 

which in turn can lead to cell death immediately after the ischemia, but it might also be essential for 

the recovery of metabolic functionality in later stages (Ikonomidou and Turski, 2002). Effectively, 

Glu can participate in the recovery of energy production being used as intermediary metabolite for 

ATP synthesis, especially when the oxygen tension is not so low to abolish the oxidative 

metabolism, as it is observed in the ischemic penumbra and in the post-stroke recovery phases. The 

role of substrates alternative to glucose in supporting neuronal activity during and after 

hypoglycaemia has been recently explored in vitro and in vivo by using nuclear magnetic resonance 

(NMR), spectroscopy, and metabolic modelling (Amaral et al., 2011; Choi et al., 2001; Criego et 

al., 2005; Oz et al., 2009; Rao et al., 2010). In this regard, Sutherland and colleagues investigated 

how metabolism was processed in rat brain during and following recovery from profound 

hypoglycaemia (Sutherland et al., 2008). They provided evidence of a time-dependent increase in 

aspartate in parallel to a decrease in Glu/glutamine levels, and suggested that Glu, via aspartate 

aminotransferase, is the primary source of carbon when glucose-derived pyruvate is unavailable 

(Sutherland et al., 2008). A substantial net consumption of Glu during hypoglycaemia has also been 

documented by Rao and colleagues by monitoring the neurochemical profile in the hippocampus of 

14 day old rats (Rao et al., 2010). 

To further explore the physiological importance of the EAAC1-NCX1 relationship, we tested the 

possibility that a functional association between NCX1 and EAAC1 could be involved in the 

metabolic response to Glu not only in brain but also in the heart. Early evidence suggests that in 

cardiac tissue Glu exerts a protective action in ischemia by sustaining energy metabolism 
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(Pisarenko et al., 1995). More recently, a putative protective role of Glu in myocardial infarction 

has been also postulated (Sivakumar et al., 2008; Sivakumar et al., 2011). However, to the best of 

our knowledge, no molecular mechanisms have been proposed. To this aim, we decided to use as 

cardiac model two cell clones, namely H9c2-WT (with no detectable endogenous NCX1 

expression) and H9c2-NCX1 (constitutively expressing NCX1). Since both H9c2-WT and H9c2-

NCX1 express GLAST, GLT-1 and EAAC1, these cell lines gave us the chance to specifically 

evaluate the importance of NCX1 in Glu-response. In line with the results obtained under NCX 

pharmacological blockade, in H9c2-WT Glu failed to induce any detectable response in terms of 

ATP synthesis, plasma membrane depolarization, and [Ca2+]cyt increase (Figs. 5B, 6A and 7A) 

However, these DL-TBOA and SN-6 sensible responses were restored in H9c2-NCX1 cells (Figs. 

5B, 5C and 5D; 6A, 6C and 7A, 7C), where we also detected the specific EAAC1-NCX1 physical 

interaction (Fig. 5A). 

One may speculate that the increase in ATP content could be ascribed to the increase in [Ca2+]cyt 

(Denton, 2009) occurring as a consequence of the hypothesized NCX reverse mode of operation. 

However, we observed that a rise in [Ca2+]cyt was unable on its own to increase ATP levels in 

absence of Glu. Otherwise, Ca2+ plays a fundamental role, given that in absence of extracellular 

Ca2+, Glu failed to induce any significant increase in ATP content (Fig. 8).  

Therefore the following mechanism can be suggested: NCX activity maintains Na+ gradient 

allowing Glu and Na+ ions to enter into the cells. Moreover, the increase in [Na+]i induces NCX-

reverse mode, leading to [Ca2+]cyt increase. Such increase can be buffered by mitochondria, 

stimulating Ca2+-dependent dehydrogenases (Denton, 2009). This effect, in the presence of Glu as 

substrate, may contribute to the increase in ATP synthesis. Indeed, once in the cytoplasm, Glu can 

be taken up by mitochondria, where EAAC1 co-exist with NCX1 in a macromolecular complex as 

we previously described (Magi et al., 2012). Here NCX1 operates in the reverse mode to re-

establish the Na+ gradient across the mitochondrial membrane, further increasing mitochondrial 
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Ca2+ concentration and Ca2+-dependent dehydrogenases activity, with a concomitant increase in 

ATP synthesis. 

In conclusion, we provide evidence that the EAAC1-NCX1 dependent influx pathway participates 

to the Glu-dependent metabolic response of neuronal and non-neuronal cells. The EAAC1-NCX1 

interplay could have important implications, especially in pathological conditions. Future studies 

will try to address this hypothesis. 
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Figure Legends 

 

Figure 1. Involvement of NCX and EAAT in Glu-stimulated ATP synthesis in SH-SY5Y and 

C6 cells. 

ATP production in SH-SY5Y (A) and C6 (B) cells after 1 hour incubation with Glu (black bars) or 

vehicle (gray bars). DL-TBOA was able to counteract Glu-stimulated ATP synthesis in both cell 

lines. (C, D) KB-R7943 and SN-6 effect on Glu-induced ATP synthesis in SH-SY5Y and C6 cells, 

respectively. Both NCX inhibitors were able to counteract Glu-induced ATP synthesis. Cells were 

pre-incubated for 15 minutes with the inhibitors and then exposed to Glu (black bars) or vehicle 

(grey bars) for 1 hour. The drugs did not affect the energy level at the steady state. Each bar in 

panels A-D represents the mean of almost six different experiments. 

* p<0.01 vs any other group (Fig. 1A); * p<0.001 vs any other group (Figs. 1B-D). 

 

Figure 2. Real-time membrane potential analysis in intact cells (SH-SY5Y and C6). 

Experiments performed in SH-SY5Y (A,C,E) and C6 (B,D,F) cells using the plasma membrane 

potential indicator bis-oxonol (1 µM). Glu perfusion induced plasma membrane depolarization 

(blue line). DL-TBOA (300 µM) (pink line), SN-6 (3 µM) (green line) and KB-R7943 (yellow line) 

(3 µM) all perfused from 20 minutes before through the end of recordings, prevented Glu-

stimulated plasma membrane depolarization. For each group, more than 50 cells recorded in three 

different experimental sessions were analyzed and the maximal depolarization induced after Glu 

stimulation was used for the statistical analysis. * p<0.001 vs any other group.  

(E,F) Inhibitors did not have any significant effect on plasma membrane potential. For each group, 

more than 30 cells recorded in three different experimental sessions were analyzed. 
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Figure 3. Real-time intracellular Ca2+ analysis in intact cells (SH-SY5Y and C6). 

Experiments performed in SH-SY5Y (A,C,E) and C6 (B,D,F) cells using the intracellular Ca2+ 

indicator Fluo-4 AM (5 µM ). Glu perfusion induced an increase in intracellular Ca2+levels (blue 

line). DL-TBOA (300 µM) (pink line), SN-6 (3 µM) (green line) and KB-R7943 (3 µM) (yellow 

line) all perfused from 20 minutes before through the end of recordings, prevented Glu-stimulated 

[Ca2+]cyt increase. For each group, more than 50 cells recorded in three different experimental 

sessions were analyzed and the maximal [Ca2+]cyt induced after Glu stimulation was used for the 

statistical analysis. * p<0.001 vs any other group.  

(E,F) Inhibitors did not have any significant effect on [Ca2+]cyt. For each group, more than 30 cells 

recorded in three different experimental sessions were analyzed.    

 

Figure 4. NCX1-EAAC1 coimmunprecipitation. 

(A) Characterization of the EAAT isoforms expression by immunoblots on membrane protein 

fractions obtained from SH-SY5Y and C6 cells. Only EAAC1 protein expression was detected in 

both cell lines. (B,C) Coimmunoprecipitation experiments showing NCX1-EAAC1 physical 

interaction in SH-SY5Y and C6 cells. Membrane protein fractions (m) enriched with anti-NCX1 

antibody (B) or EAAC1 antibody (C) by selective immunoprecipitation (Ip) were loaded onto the 

gel and the reactivity versus EAAC1 and NCX1, respectively, was evaluated. In each Ip lane, the 

lower bands represent the immunoglobulins. 

 

Figure 5. Characterization of H9c2 cells and involvement of NCX and EAAT in Glu-

stimulated ATP synthesis. 

(A) Characterization of H9c2 cardiac myoblast. Immunoblot analysis showed NCX1 expression in 

H9c2-NCX1 transfected cells but not in the H9c2-WT. H9c2 cells showed positive 

immunoreactivity for GLT1, GLAST and EAAC1. On the bottom of panel A (right side), 

coimmunoprecipitation experiments performed in H9c2-NCX1 and H9c2-WT are showed. NCX1-
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EAAC1 physical interaction was detected in H9c2-NCX1, while in H9c2-WT membrane protein 

fractions coimmunoprecipitation experiments showed negative results, confirming the specificity of 

such interaction. Membrane protein fractions (m) and selective immunoprecipitation enriched with 

EAAC1 antibody or anti-NCX1 antibody (Ip) were loaded onto the gel and the reactivity versus 

NCX1 and EAAC1, respectively, was evaluated. In each Ip lane, the lower bands represent the 

immunoglobulins. 

On the bottom of panel A (left side) the functional characterization of H9c2-NCX1 cells is showed: 

a representative trace (of average 60 cells) of Na+-free induced an increase in [Ca2+] cyt in H9c2-

NCX1 cells (red line). This phenomenon did not occur in H9c2-WT (black line). Each value is 

reported as % of its basal fluorescence. (B) In H9c2-WT cells (white bars) glutamate was not able 

to evoke ATP synthesis, while in H9c2-NCX1cells (gray bars) Glu induced a remarkable increase 

in ATP production that was counteracted by DL-TBOA (C).  

(D) Pharmacological inhibition exerted by SN-6 on glutamate-induced ATP synthesis in H9c2-

NCX1 cells. Cells were pre-incubated for 15 minutes with the inhibitors and then exposed to 

glutamate (black bars) or vehicle (grey bars) for 1 hour. The drugs did not affect the energy level at 

the steady state. Each bar in panels B-D represents the mean of almost five different experiments. 

*p<0.05 vs any other group (Fig. 5C); * p<0.001 vs any other group (Figs. 5B and 5D).  

 

Figure 6. Real-time membrane potential analysis in intact cells (H9c2). 

(A) Experiments performed in H9c2-WT and H9c2-NCX1 cells using the plasma membrane 

potential indicator bis-oxonol (1 µM). Only H9c2-NCX1 (gray line) showed a significant plasma 

membrane depolarization. (B) Inhibitors did not have any significant effect on plasma membrane 

potential. For each group, more than 30 cells recorded in three different experimental sessions were 

analyzed. (C) In H9c2-NCX1 cells DL-TBOA (300 µM) (blue lines) and SN-6 (3 µM) (pink lines), 

all perfused from 20 minutes before through the end of recordings, prevented Glu-stimulated 

plasma membrane depolarization. For each group, more than 50 cells recorded in three different 
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experimental sessions were analyzed and the maximal depolarization induced after glutamate 

stimulation was used for the statistical analysis. * p<0.001 vs any other group.  

 

Figure 7. Real time intracellular Ca2+ analysis in intact cells (H9c2). 

(A) Experiments performed in H9c2-WT and H9c2-NCX1 cells using the intracellular Ca2+ 

indicator Fluo-4 AM (5 µM). Only H9c2-NCX1 (gray line) showed a remarkable increase in 

[Ca2+]cyt. (B) Inhibitors did not have any significant effect on [Ca2+]cyt. For each group, more than 

30 cells recorded in three different experimental sessions were analyzed. (C) In H9c2-NCX1 cells 

DL-TBOA (300 µM) (blue lines) and SN-6 (3 µM) (pink lines), all perfused from 20 minutes 

before through the end of recordings, prevented Glu-stimulated increase in [Ca2+]cyt. For each 

group, more than 50 cells recorded in three different sessions were analyzed and the maximal 

depolarization induced after glutamate stimulation was used for the statistical analysis. * p<0.001 vs 

any other group. 

 

Figure 8. Effect of Ca2+ and Glu on ATP synthesis. 

ATP production in SH-SY5Y (A), C6 (B) and H9c2-NCX1 (C) after 1 hour exposure to Glu both in 

presence and absence of extracellular Ca2+. ATP production was also evaluated in absence of Glu in 

a Na+-free extracellular solution able to evoke an increase in [Ca2+]cyt. For all the three cell lines 

analyzed, the increase in ATP synthesis occurred exclusively when cells were exposed to Glu in the 

presence of extracellular Ca2+. 

Each bar represents the mean of six different experiment for SH-SY5Y cells and of ten different 

experiments for C6 and H9c2-NCX1 cells.  

*p<0.001 vs any other group (Figs. 8A and 8B); *p<0.001 vs Ctrl s.b.s., Ctrl 0Ca2+, Ctrl 0Ca2+ + 

Glu; #p<0.05 vs 0Na+ (Fig. 8C). 
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