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ABSTRACT 

 

β3-Adrenoceptor agonists have recently been introduced for the treatment of the overactive 

urinary bladder syndrome. Their target, the β3-adrenoceptor, was discovered much later than 

β1- and β2-adrenoceptors and exhibits unique properties which make extrapolation of findings 

from the other two subtypes difficult and the β3-adrenoceptor a less understood subtype. This 

article discusses three aspects of β3-adrenoceptor pharmacology. Firstly, the ligand-

recognition profile of β3-adrenoceptors differs considerably from that of the other two 

subtypes, i.e. many antagonists considered as non-selective actually are β3-sparing including 

propranolol or nadolol. Many agonists and antagonists classically considered as being β3-

selective actually are not, including BRL 37,344 or SR 59,230. Moreover, the binding pocket 

apparently differs between the human and rodent β3-adrenoceptor, yielding considerable 

species differences in potency. Second, the expression pattern of β3-adrenoceptors is more 

restricted than that of other subtypes, particularly in humans; while this makes extrapolation 

of rodent findings to the human situation difficult, it may result in a smaller potential for side 

effects. The role of β3-adrenoceptor gene polymorphisms has insufficiently been explored and 

may differ even between primate species. Third, β3-adrenoceptors lack the phosphorylation 

sites involved in agonist-induced desensitization of the other two subtypes. Thus, they exhibit 

down-regulation and/or desensitization in only some but not other cell types and tissues. 

When desensitization occurs, it most often is at the level of mRNA or signaling molecule 

expression. All three of these factors have implications for future studies to better understand 

the β3-adrenoceptor as a novel pharmacological target.  
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INTRODUCTION 

 

Muscarinic receptor antagonists are the mainstay of symptomatic treatment of the overactive 

bladder syndrome, but due to limited efficacy and tolerability often are used for short periods 

only. β3-Adrenoceptor agonists are an emerging alternative treatment option. In 2012 the first 

clinical proof of concept study for a member of this new drug class, solabegron, has been 

reported (Ohlstein et al., 2012); in 2013 the first member of this class, mirabegron (Chapple et 

al., 2014), has received marketing authorization in the US and Europe. This strengthened 

interest in β3-adrenoceptors and their pharmacology.  

 

Soon after the subdivision of β-adrenoceptors into the subtypes β1 and β2, it became clear that 

the pharmacological profile of some apparently β-adrenoceptor-mediated responses did not fit 

either of these two subtypes (Nergardh et al., 1977). However, the existence of a third 

subtype, the β3-adrenoceptor, was not universally accepted until it was first cloned in 1989 

(Emorine et al., 1989). In its 1994 adrenoceptor classification IUPHAR recognized the 

presence of three adrenoceptor subfamilies, the α1-, α2- and β-adrenoceptors, with β1-, β2- and 

β3-adrenoceptors as members of the latter (Bylund et al., 1994).  

 

Why did it take more than 30 and almost 25 years from discovery and cloning of the β3-

adrenoceptor, respectively, to the launch of its first ligand for clinical use? This manuscript 

discusses three areas which have historically limited studies on β3-adrenoceptors but can also 

be seen as opportunities to develop highly targeted treatments, i.e. a unique and species-

specific ligand recognition profile, a restricted expression, and a unique regulation pattern as 

compared to β1- and β2-adrenoceptors. Therapeutic opportunities resulting from this unique 

profile are discussed. 
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UNIQUE LIGAND RECOGNITION PROFILE 

 

The canonical signaling of β3-adrenoceptors, similar to the other subtypes, occurs via the Gs-

cAMP pathway but coupling to Gi-proteins leading to activation of p38 protein kinase has 

also been reported (Sato et al., 2007;Sato et al., 2012). β3-Adrenoceptors have similar affinity 

for norepinephrine as the other two subtypes but lower affinity for epinephrine (Table 1). 

Hence, all subtypes of innervated β-adrenoceptors are likely to similarly respond to 

neuronally released norepinephrine, particularly given its high concentrations in the synaptic 

cleft. On the other hand, circulating epinephrine may only poorly activate extrasynaptic β3-

adrenoceptors, potentially leading to some functional selectivity. 

 

A key roadblock to the acceptance of β3-adrenoceptors was its unique ligand recognition 

profile. For example, sensitivity to the classic antagonist propranolol has long been viewed as 

a defining feature of β-adrenoceptors, but the affinity of β3-adrenoceptors for this antagonist is 

about two log units lower than that of β1- or β2-adrenoceptors (Table 1). Many other classic 

antagonists, including the clinically used atenolol, bisoprolol and metoprolol, also display 

considerably lower affinity for β3- as compared to β1- and/or β2-adrenoceptors (Table 1). The 

term “non-selective” β-adrenoceptor antagonist should describe drugs with similar affinity for 

all three subtypes; however, often but wrongly it refers to similar affinity for β1- and β2-

adrenoceptors only. We propose that ligands with similar affinity for β1- and β2- but much 

lower affinity for β3-adrenoceptors should be referred to as “β3-sparing” in the future. 

 

Three antagonists which have often been used to block apparent β3-adrenoceptor responses 

deserve special consideration. Bupranolol, while not being selective for the β3-subtype, was 

found to inhibit some responses which were resistant to other antagonists such as nadolol or 

propranolol (Atef et al., 1996;Igawa et al., 1998;Takeda et al., 2002). Accordingly, bupranolol 
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has been used to explore β3-adrenoceptor involvement in in vivo responses (Reverte et al., 

1993;Atef et al., 1996), particularly under conditions where the same response was not 

blocked by antagonists such as nadolol. However, in studies with cloned human subtypes, 

bupranolol also exhibited lower affinity for β3- as compared to β1- and particularly β2-

adrenoceptors (Table 1). 

 

Therefore, investigators have turned to antagonists which are supposedly β3-selective. The 

most frequently used one is SR 59,230, but it does not fulfill the criteria for a useful β3-

selective antagonist in two ways. First, SR 59,230 has consistently failed to display β3-

selectivity in studies with cloned human subtypes; if anything its affinity was somewhat less 

than for the other two subtypes (Table 1). Second, SR 59,230 is a biased agonist at β3-

adrenoceptors with poor efficacy for cAMP formation and greater efficacy for p38 activation 

(Hutchinson et al., 2005;Sato et al., 2007). It is a partial agonist for smooth muscle relaxation 

with an efficacy of up to 80% (Horinouchi and Koike, 2001;Frazier et al., 2011). These 

findings limit the use of SR 59,230 as an antagonist to identify β3-adrenoceptor responses. 

 

Until recently, it was thought that L 748,337 may be a better alternative to selectively block 

β3-adrenoceptors. Indeed in radioligand binding studies with cloned human subtypes it 

exhibited much higher affinity for β3- than β1- or β2-adrenoceptors (Ki 4 vs. 390 and 204 nM, 

respectively) (Candelore et al., 1999). Accordingly, a tritiated version of L 748,337 has been 

proposed to be a β3-selective radioligand in studies with human receptors (van Wieringen et 

al., 2013). However, the latter studies also identified two possible problems in using L 

748,337. Firstly, its affinity for rodent β3-adrenoceptors apparently is considerably lower than 

for the human subtype. Secondly, L 748,337 binds to a low affinity site which is distinct from 

the catecholamine binding site of the β3-adrenoceptor, an observation in line with those in 

other studies (Baker, 2010); however, this site has not specifically been mapped and its 
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relevance for function of the receptor remains unclear. Moreover, similar to SR 59,230, L 

748,337 is a biased agonist with low efficacy for cAMP formation and much greater for p38 

activation, the latter apparently involving a pertussis toxin-sensitive G-protein (Sato et al., 

2008). Nonetheless L 748,337 remains the most suitable among the poor β3-adrenoceptor 

antagonists. While there is no anticipated clinical use for a selective, non-biased, high-affinity 

β3-adrenoceptor antagonist, such a compound would considerably support future research in 

this area. The molecular basis for the unique ligand recognition profile of β3-adrenoceptors 

has not been established, as modelling studies have not been reported after the crystal 

structure of β1- and β2-adrenoceptors was revealed. 

 

Similar problems have long existed for β3-adrenoceptor agonists. Historically, BRL 37,344 

has been used most often but is a poor choice (Vrydag and Michel, 2007). At least for human 

receptors it exhibits poor subtype-selectivity (Table 1), and accordingly in both rats (Mori et 

al., 2010) and humans (Pott et al., 2003) exerts many of its effects via β1- or β2-adrenoceptors. 

Moreover, at least when acting on β2-adrenoceptors, it is a biased agonist favoring the Gs-

cAMP pathway (Ngala et al., 2013) and, in high concentrations, can additionally exhibit 

muscarinic receptor antagonism (Vrydag and Michel, 2007). L 755,507 apparently recognizes 

two sites on the β3-adrenoceptor, of which only that with higher affinity displays relevant 

selectivity towards the other subtypes (Baker, 2010). CL 316,243 has low potency at the 

human β3-adrenoceptor; while it exhibits selectivity towards β1-adrenoceptors, that towards 

β2-adrenoceptors is only poor (Baker, 2005). More hope comes from β3-adrenoceptor agonists 

which have entered clinical development such as mirabegron, ritobegron and solabegron; for 

experimental use of these compounds it should be considered that mirabegron and ritobegron 

may preferentially act on the human and rat orthologue, respectively (Igawa et al., 

2012;Igawa and Michel, 2013). 
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Finally, many β3-adrenoceptor ligands exhibit relevant species differences in affinity. For 

instance, the agonist BRL 37,344 (Nahmias et al., 1991;Liggett, 1992), the weak partial 

agonist CGP 12,177 (Liggett, 1992) and the antagonist/biased agonist L 748,337 (Candelore 

et al., 1999;van Wieringen et al., 2013) exhibit affinity differences of 10-fold or more 

between rat and human or rat and rhesus monkey β3-adrenoceptors, indicating important 

species differences in the ligand binding pocket; a better understanding of such difference 

awaits resolving the crystal structure of β3-adrenoceptors. Based on such species differences, 

several investigators have turned to monkeys to explore properties of novel β3-adrenoceptor 

agonists (Maruyama et al., 2012;Hatanaka et al., 2013). 

 

RECEPTOR POLYMORPHISMS AND EXPRESSION PATTERN 

 

Soon after the cloning of the human β3-adrenoceptor it became clear that the corresponding 

gene is polymorphic (Clement et al., 1995;Walton et al., 1995). The most frequently studied 

polymorphism is an exchange of tryptophan in position 64 for an arginine (Trp64Arg). The 

frequency of this polymorphism has been compared in cross-sectional studies for various 

conditions including obesity (Engelhardt and Ahles, 2014). While some of these studies have 

reported associations with disease, particularly with states compatible with hypofunctional β3-

adrenoceptors, many other studies have not confirmed such findings. While this could at least 

partly be linked to a reporting bias, the overall available data are in favor of the Trp64Arg 

polymorphism being associated with at least some pathophysiological conditions; however, 

such associations may be too weak to be robustly detected. Accordingly, the β3-adrenoceptor 

gene locus has not shown up in genome-wide association studies for any common disease 

(Engelhardt and Ahles, 2014). 
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Recreation of the Trp64Arg polymorphism by site-directed mutagenesis studies has also 

yielded inconsistent results (Vrydag et al., 2009;Engelhardt and Ahles, 2014). On the other 

hand, sequencing studies showed that the Trp64Arg polymorphism forms a haploblock with 

several polymorphisms in the non-coding part of the β3-adrenoceptor gene, including single 

nucleotide and TG dinucleotide length polymorphisms (Table 2). This raises the possibility 

that Trp64Arg itself may not modify expression or function of the receptor but rather may be 

an indicator for the presence of other polymorphisms; however, the functional role of these 

non-coding polymorphisms has not been defined. Based on the use of non-human primates in 

β3-adrenoceptor research (Maruyama et al., 2012;Hatanaka et al., 2013), it is interesting that 

the haploblock consistently identified in the human β3-adrenoceptor gene is not mirrored in 

non-human primates including chimpanzees (Table 2), indicating that it has emerged late in 

phylogenesis. 

 

The expression of β3-adrenoceptor mRNA is more restricted than that of β1- and β2-

adrenoceptors and in humans largely limited to brown adipose tissue, gall bladder and ileum 

and, at a lower level, in white adipose tissue and the urinary bladder (Thomas and Liggett, 

1993;Berkowitz et al., 1995). Notably, only little β3-adrenoceptor expression has been found 

in human brain, heart, arteries, veins, liver, lung or skeletal muscle. The expression pattern in 

rats (Muzzin et al., 1991) and mice (Regard et al., 2008) is qualitatively similar; while direct 

comparative studies are largely lacking, it appears that expression in rodents in most tissues is 

greater than in humans, for instance in brain, white and brown adipose tissue, stomach and 

colon. Expression studies at the protein level have long been hampered by a lack of target 

selectivity of many β3-adrenoceptor antibodies (Cernecka et al., 2012). Suitable radioligands 

have also been missing until recently (van Wieringen et al., 2013). Therefore, most tissue 

mapping has relied on functional studies. While this has provided robust evidence for 

dominant role of the β3-subtype in human bladder smooth muscle relaxation (Michel and 
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Vrydag, 2006), the evidence for involvement of this subtype in the regulation of other tissues 

is less convincing due to a limited number of studies and poor selectivity of many of the tools 

used in those studies (Michel et al., 2010). 

 

UNIQUE REGULATION PROFILE 

 

The overactive bladder syndrome is the only validated therapeutic use of β3-adrenoceptor 

agonists. In this indication they provide symptomatic relief but no cure of the condition 

(Chapple et al., 2014), necessitating long-term treatment. Therefore, agonist-induced β3-

adrenoceptor desensitization is considered undesirable in this indication to maintain 

therapeutic efficacy.  

 

An interesting molecular feature of the β3-adrenoceptor is the lack of phosphorylation sites 

implied in agonist-induced desensitization and down-regulation of β1-and β2-adrenoceptors 

(Liggett et al., 1993;Nantel et al., 1993). Accordingly, studies with β3-adrenoceptors 

transfected into Chinese hamster ovary cells reported a lack of desensitization with agonist 

exposure of up to 1 h (Chaudhry and Granneman, 1994), whereas longer exposure (6-24 h) 

resulted in desensitization (Chambers et al., 1994;Candelore et al., 1996); however, the latter 

occurred in the absence of receptor down-regulation and was rather explained by a reduced Gs 

expression (Chambers et al., 1994). On the other hand, β3-adrenoceptor desensitization and 

down-regulation can occur when transfected into other cell types such as human embryonic 

kidney cells (Chaudhry and Granneman, 1994;Michel-Reher and Michel, 2013). Studies with 

natively expressed β3-adrenoceptor have yielded both negative (Carpene et al., 1993;Curran 

and Fishman, 1996) and positive findings (Granneman and Lahners, 1992;Bengtsson et al., 

1996;Scarpace et al., 1999;Hutchinson et al., 2000), which is in sharp contrast to the 

desensitization of β1-and β2-adrenoceptors observed in almost every cell type ever studied. 
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Interestingly, in cases where β3-adrenoceptor desensitization was observed it often occurred at 

the level of receptor mRNA expression (Granneman and Lahners, 1992;Bengtsson et al., 

1996;Scarpace et al., 1999) or that of signaling molecules activated by the receptor (Chambers 

et al., 1994;Michel-Reher and Michel, 2013), whereas down-regulation of the receptor itself 

at the protein level has rarely been reported (Michel-Reher and Michel, 2013). The Trp64Arg 

polymorphism of the receptor apparently affects neither the lack of down-regulation in 

Chinese hamster ovary cells (Candelore et al., 1996) nor the desensitization in human 

embryonic kidney cells (Vrydag et al., 2009). Taken together, agonist-induced β3-

adrenoceptor desensitization can occur in some but not other cell types and tissues but, in line 

with the lack of phosphorylation sites, when occurring largely involves down-regulation of 

corresponding mRNA and/or an altered expression of signaling molecules. 

 

Based on the above it cannot be extrapolated from other tissues whether desensitization 

occurs in target tissue for agonist treatment, the urinary bladder. While such studies are 

missing in human bladder, recent experiments in rat bladder, where relaxation involves both 

β2- and β3-adrenoceptors (Michel and Vrydag, 2006), have explored this question (Michel, 

2014). The β2-component of relaxation exhibited desensitization upon a 6 h exposure to 

agonists such as fenoterol or isoprenaline. In contrast, the β3-component exhibited much less 

if any desensitization, and was detectable for the experimental agonist CL 316,243 but not for 

the clinically used agonist mirabegron. In line with these observations therapeutic effects 

appeared stable over a one-year treatment period (Chapple et al., 2014). 

 

THERAPEUTIC OPPORTUNITIES  

 

Originally it had been assumed that β3-adrenoceptor agonists may be useful in the treatment 

of obesity and type 2 diabetes, but negative clinical proof-of-concept studies with multiple 
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compounds have invalidated this concept; the most likely reason for this is the differential 

expression pattern between rodents and humans, particularly with regard to adipose tissue 

(Muzzin et al., 1991;Thomas and Liggett, 1993;Berkowitz et al., 1995;Regard et al., 2008).  

 

Thus, the only validated therapeutic use of β3-adrenoceptor agonists is the symptomatic 

treatment of the overactive bladder syndrome. Human bladder relaxation is mediated 

predominantly if not exclusively by the β3-adrenoceptor subtype (Igawa et al., 2012), and β-

adrenoceptor agonists are effective in every experimental model of bladder dysfunction ever 

investigated (Michel and Barendrecht, 2008). Accordingly, two β3-adrenoceptor agonists have 

shown efficacy in placebo-controlled studies, i.e. solabegron (Ohlstein et al., 2012) and 

mirabegron (Chapple et al., 2014), the latter recently having obtained regulatory approval. A 

notable observation in these studies was a tolerability profile close to placebo, apparently 

reflecting the limited expression of β3-adrenoceptors outside the urinary bladder. The current 

standard of care in overactive bladder treatment is muscarinic receptor antagonists. 

Considerable experimental evidence supports the view that combinations of β-adrenoceptor 

agonists and muscarinic antagonists exhibit at least additive effects on smooth muscle tone  

(Dale et al., 2014). In the human bladder physiological contraction during voiding is 

predominantly mediated by muscarinic receptors of the M3 subtype (Schneider et al., 2004), 

but in pathological settings additional mediators such as ATP or bradykinin may contribute. 

Therefore, it was interesting to observe that β-adrenoceptor agonists produce weaker 

inhibition of bladder contraction by a muscarinic agonist as compared to any other contractile 

stimulus (Michel and Sand, 2009). In this regard a β3-selective agonist showed less consistent 

differences between contractile stimuli than isoprenaline (Table 3), probably reflecting that in 

contrast to human bladder that of rat bladder involves a mixture of β2- and β3-adrenoceptors 

(Michel and Vrydag, 2006). These findings have two implications with clinical relevance: 

First, β3-adrenoceptor agonists will preferentially inhibit pathological contractile stimuli over 
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physiological voiding. Second, to enable inhibition by an increased cholinergic tone in 

overactive bladder a combination with a muscarinic antagonist appears promising. Clinical 

data will be required to test this concept, and initial data are emerging (Abrams et al., 2014). 

 

Based on animal studies and/or ex vivo studies with human tissue several other possible uses 

of β3-adrenoceptor agonists have been proposed including tocolysis (Bardou et al., 2007), 

congestive heart failure (Rasmussen et al., 2009), retinal disease (Gericke et al., 2013) and 

anxiety and depression (Stemmelin et al., 2008). However, all of these will require validation 

studies in patients (Michel et al., 2010).  
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Table 1: Affinity comparison of commonly used ligands at human β-adrenoceptor subtypes. 

Values represent ratios of reported affinity estimates (Ki values β3/β1 and β3/β2) based on 

(Blin et al., 1993;Candelore et al., 1999;Hoffmann et al., 2004;Baker, 2005;Niclauß et al., 

2006;Baker, 2010). Values <1 represent selectivity for β3-adrenoceptors, whereas those >1 

represent selectivity for the other subtypes; data are range of 2-4 reports.  

 

 Ki value ratio β3/β1 Ki value ratio β3/β2 

Norepinephrine 1.6-2.1 0.16-0.77 

Epinephrine 2.8-32 27-171 

Isoproterenol 3.5-7.0 3.4-13 

Salbutamol 2.1-22 25-107 

Salmeterol 0.25-4.5 292-1259 

BRL 37,344 0.01-0.05 0.05-1.2 

Atenolol 168-355 76-80 

Bisoprolol 145-405 7.9-11 

Bupranolol 29-29 125-650 

Metoprolol 126-215 3.4-54 

Propranolol 17-103 141-233 

CGP 12,177 17-166 18-251 

CGP 20,712 502-4169 0.58-8.3 

CL 316,243 0.008 0.10 

ICI 118,551 1.2-12 661-873 

L 748,337 0.003-0.01 0.02-0.03 

SR 59,230 1.1-7.4 2.0-12 
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Table 2: Genotypes of human, chimpanzee and macaque β3-adrenoceptors. The mutation and 

position of the 5 SNPs are depicted in column 1 and 2, respectively. SNP T190C is the 

Trp64Arg mutation. Δtg3273/3274 refers to the repeat polymorphism, where the nine repeats 

in wild-type are reduced to eight in the polymorphic human gene. Based upon data from 

(Michel et al., 2008;Vrydag et al., 2009;Teitsma et al., 2013). 

 

Polymorphism Position Wild-type 

Human Chimpanzee Macaque 

T190C Coding T C C 

g1219t Intron g g g 

a2135g Intron a a a 

g25002c 3’-UTR g c c 

a3558t 3’-UTR a t t 

Δtg3273/32744 3’-UTR - - - 
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Table 3:  Potency (pEC50) and efficacy (Emax, expressed as % of 10 µM forskolin-induced 

relaxation) of the β3-adrenoceptor agonist KUC-7322 (Igawa et al., 2012) and isoprenaline 

against various pre-contraction stimuli in rat bladder. Isoprenaline data are adapted from 

(Michel and Sand, 2009), those for KUC-7322 were obtained within the same series of 

experiments. Data are expressed as means ± SEM of 6-8 experiments, *p< 0.05 versus 

carbachol-induced contraction in a one-way ANOVA followed by Dunnett’s multiple 

comparison tests. 

 

 Time control KUC-7322 isoprenaline 

 Emax  pEC50 Emax pEC50 Emax 

Passive tension 21 ± 4 7.29 ± 0.09 90 ± 3 8.76 ± 0.08* 84 ± 2* 

KCl 23 ± 2 7.09 ± 0.07 75 ± 2 8.00 ± 0.06* 80 ± 1* 

Carbachol 13 ± 2 6.10 ± 0.67 71 ± 14 7.27 ± 0.15 57 ± 2 

Serotonin 15 ± 2 7.36 ± 0.11* 95 ± 3* 8.54 ± 0.05* 91 ± 1* 

Bradykinin 16 ± 3 7.03 ± 0.08 82 ± 2 8.66 ± 0.10* 79 ± 2* 
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