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GPCR, G protein-coupled receptor; PDZ, PSD-95, Disc large, Zona occludens-1; PSD, post-
synaptic density; PSD-95/93, post-synaptic density protein of 95/93 kilodaltons; SAP97/102, 
synapse-associated protein of 97/102 kilodaltons; DLG5, discs, large homolog 5; CARD, caspase 
activation and recruitment domain; CARMA3, CARD and MAGUK domain-containing protein 3;  
MPP3, membrane protein, palmitoylated 3; CASK, calcium/calmodulin-dependent serine protein 
kinase; MAGI-1/2/3, membrane-associated guanylate kinase protein 1/2/3; NHERF1/2, Na+/H+ 
exchanger regulatory factor 1/2; PDZK1/2, PDZ domain-containing kidney protein 1/2; GIPC, 
GAIP interacting protein, C terminus; CAL, CFTR-associated ligand; PDZ-GEF1/2, PDZ domain-
containing guanine nucleotide exchange factor; RGS3/12, regulator of g protein signaling; RH-
RhoGEF, RGS-homology domain containing Rho guanine nucleotide exchange factor; LARG, 
leukemia-associated RhoGEF; PDZ-RhoGEF, PDZ domain-containing RhoGEF; SH3, SRC 
Homology 3 domain; Shank1/2/3, SH3 and multiple ankyrin repeat domains 1/2/3; Par3/6, 
Partitioning defective protein 3/6; MUPP1, multiple PDZ protein 1; nNOS, neuronal nitric oxide 
synthase; PICK1, protein interacting with PRKCA 1; SNX27, sorting nexin 27; 1/2AR, 1/2 
adrenergic receptors; 5-HT1-7R, serotonin 1-7 receptor; D1-3R, dopamine 1-3 receptor; CRFR1/2, 
corticotropin-releasing factor receptor 1/2; A1/2R, adenosine 1/2 receptor; VPAC1, vasoactive 
intestinal peptide receptors 1; mGluR, metabotropic glutamate receptor; 1/2AR, 1/2 adrenergic 
receptor; TP, thromboxane A2 receptor; hκ-OR, human  opioid receptor; SSTR, somatostatin 
receptor; PTH1R, parathyroid 1 receptor; CCR5, chemokine (C-C motif) receptor 5; PAFR, 
platelet-activating factor receptor; P2Y1/12R, purinergic P2Y receptors; hIPR, human prostacyclin 
receptor; CL1, -Latrotoxin receptor CIRL/latrophilin 1; OR,  opioid receptor; GPR10, 
prolactin-releasing peptide receptor; GHRHR, growth hormone-releasing hormone receptor; 
LPA1/2R, lysophosphatidic acid 1/2 receptor; hLHR, human luteinizing hormone receptor; BAI1, 
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brain; MT1, melatonin 1 receptor; M1-4/mAChR1-4, muscarinic acetylcholine receptor 1-4 receptor; 
CB1, cannabinoid receptor 1; ET1R, endothelin 1 receptor; FSHR, follicle-stimulating hormone 
receptor; PAR1, protease-activated receptor 1; AT1R, angiotensin II receptor 1; OR2AG1, 
olfactory receptor 2AG1; GABAB, gamma-aminobutyric acid B receptor; B2R, bradykinin 2 receptor; 
GRPR, gastrin-releasing peptide receptor; GRHR, gonadotropin-releasing hormone receptor; 
C5aR, chemo-attractant C5a receptor; PAC1R, pituitary adenylate cyclase-activating polypeptide 
1 receptor; S1PR2; sphingosine-1-phosphate receptor 2; GPR132, G2 accumulation protein/g 
protein-coupled receptor 132; H1R, histamine 1 receptor; MAS1, proto-oncogene mas; Mam2, 
pheromone p-factor receptor; ERK, extracellular signal-related kinase; IP3, inositol 1,4,5-
trisphosphate; DAG, diacylglycerol; PLC, phospholipase C; PKA, protein kinase A; PKC, protein 
kinase C; Akt, protein kinase B; cAMP, cyclic andenosine monophosphate; CREB, cAMP 
response element-binding protein; cfos; FAK, focal adhesion kinase; Fzd, frizzled; GPR37, G 
protein-coupled receptor 37 (endothelin receptor type B-like). 
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Abstract 

G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of 

human physiology and are the therapeutic targets for the treatment of numerous diseases.  As a 

consequence, understanding the myriad of mechanisms controlling GPCR signaling and 

trafficking is essential for the development of new pharmacological strategies for the treatment of 

human pathologies.  Of the many GPCR-interacting proteins (GIPs), PDZ domain-containing 

proteins appear most abundant and have similarly been implicated in disease mechanisms.  PDZ 

proteins play an important role at regulating receptor and channel protein localization of synapses 

and tight junctions and function to scaffold intracellular signaling protein complexes.  In the current 

study, we review the known functional interactions between PDZ domain-containing proteins and 

GPCRs, and provide insight into the potential mechanisms of action.  These PDZ domain-

containing proteins include the membrane-associated guanylate-like kinases (MAGUKs) (PSD-

95, SAP97, PSD-93, SAP102, DLG5, CARMA3, MPP3, CASK, MAGI-1, MAGI-2, MAGI-3), 

NHERF proteins (NHERF1, NHERF2, PDZK1, PDZK2), Golgi-associated PDZ proteins (GIPC 

and CAL), PDZ-GEFs (PDZ-GEF1 and PDZ-GEF2), RGS-Homology-RhoGEFs (PDZ-RhoGEF 

and LARG), RGS3 and RGS12, spinophilin and neurabin-1, Shank proteins (Shank1, Shank2, 

Shank3), Par3 and Par6, MUPP1, Tamalin, nNOS, syntrophins, PICK1, syntenin-1 and SNX27. 
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Introduction 

In the central nervous system, G protein-coupled receptors (GPCRs) and ion channels 

are targeted at the membrane of dendritic post-synaptic terminals in and around a region termed 

the post-synaptic density (PSD) (Feng and Zhang, 2009; Neubig and Siderovski, 2002; 

Magalhaes et al., 2012).  Each post-synaptic density is specifically organized such that dozens to 

hundreds of receptors are targeted to this specialized membrane domain via the interaction of 

scaffolding proteins with the receptors.  These scaffold proteins containing multiple protein-protein 

interaction domains that allow them to interact with a multitude structural and signaling proteins 

holding them in close proximity with one another (Feng and Zhang, 2009).  Of these scaffolding 

proteins, it is believed that PSD-95, Disc large, Zona occludens-1 (PDZ) domain-containing 

proteins are the most abundant, and often provide direct contact with both GPCRs and ion 

channels at the post-synaptic density (Cheng et al., 2006; Feng and Zhang, 2009).  PDZ proteins 

are not only important for targeting GPCRs to synapses, but they an important role in regulating 

tight junctions and signaling protein complexes.  In the current review, we will overview the 

growing understanding of the role PDZ domain-containing proteins in the regulation of GPCR 

subcellular localization, endocytosis, trafficking and signal transduction. 

 

PDZ Domains 

PDZ domains are approximately 80-90 amino acid residues in size and represent the most 

common protein-protein interaction domain (Doyle et al., 1996; Feng and Zhang, 2009; 

Magalhaes et al., 2012).  Although there are hundreds of unique PDZ domain sequences, they 

all contain a conserved glycine-leucine-glycine-phenylalanine (GLGF) sequence that provides the 

domain’s folded, globular, cup-like structure that is capable of recognizing short, finger-like 

peptides (Harris and Lim, 2001).  Because of this structure, PDZ domains appear best suited for 
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binding the distal regions of receptor carboxyl terminal tails, labelled the PDZ-binding motif 

(Kornau et al., 1995; Niethammer et al., 1996; Harris and Lim, 2001; Magalhaes et al., 2012).  

Interestingly, additional studies have identified internal PDZ ligands that, like a carboxyl terminal 

tail, project outwardly from the protein (Xu et al., 1998; Hillier et al., 1999; Christopherson et al., 

1999; Fouassier et al., 2000; Harris and Lim, 2001; Paasche et al., 2005; Trejo, 2005). In this 

case, the internal PDZ-binding motif is manifest as a sharply folded, finger-like projection. 

 

PDZ-Binding Motifs  

Although seemingly imperfect and likely biased against internal PDZ ligands (reviewed by 

Trejo, 2005), a simple classification system has evolved to identify potential PDZ-binding motifs 

and helps to predict potential PDZ domain-containing protein interactions (Songyang et al., 1997; 

Bezprozvanny and Maximov, 2001; Sheng and Sala, 2001; Vaccaro and Dente, 2002).  Although 

there is some deliberation over how many classes of PDZ-binding motifs there are, it is most 

commonly limited to three classes (Sheng and Sala, 2001; Tonikian et al., 2008; Magalhaes et 

al., 2012). Class I PDZ-binding motifs are the most described class within the literature and are 

classified by their final 3 amino acid sequence of S/T-x-, where x indicates any amino acid and 

 indicates any hydrophobic amino acid (Songyang et al., 1997; Bezprozvanny and Maximov, 

2001; Sheng and Sala, 2001; Vaccaro and Dente, 2002). However, valine, isoleucine, or leucine 

appear to be most common of the hydrophobic amino acids that contribute to the formation of a 

Class I PDZ binding motif (Songyang et al., 1997; Bezprozvanny and Maximov, 2001; Sheng and 

Sala, 2001; Vaccaro and Dente, 2002). Class II and III PDZ-binding motifs are not as well 

characterized and show slightly more ambiguous sequences: with class II having its final 3 amino 

acids as -x-, and class III having -x-, where  represents any acidic amino acid residue 

(Sheng and Sala, 2001). 
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GPCR-interacting PSD-95 Family PDZ Domain-Containing MAGUK Proteins  

PSD-95 (DLG4): Post-Synaptic Density protein of 95 kDa (PSD-95) contains three PDZ domains, 

an SH3 domain, and a GK domain (Fig. 1) and is prototypically localized within the post-synaptic 

density (Sampedro et al., 1981; Cho et al., 1992).  PSD-95 has been demonstrated to modulate 

both AMPA and NMDA receptor function, as well as a number of GPCRs.  In regards to AMPA 

and NMDA receptors, it appears PSD-95 is important for enhancing and/or maintaining these 

receptors at the synaptic membrane, thereby potentiating receptor activation, channel opening, 

receptor-mediated currents and receptor trafficking (Elias et al., 2006; Elias and Nicoll, 2007).  

PSD-95 is able to indirectly bind and regulate AMPA receptors via a shared association with 

transmembrane AMPA receptor regulating proteins, such as stargazin (Chen et al., 2000).  The 

1-adrenergic receptor (1AR) is the first GPCR to be reported as a PSD-95 interacting GPCR 

and PSD-95 is responsible for antagonizing 1AR endocytosis in response to agonist activation, 

thereby stabilizing the receptor at the cell surface (Hu et al., 2000) (Table 1).  Despite the 

potentiation of 1AR membrane expression, this interaction appears to have no functional 

consequence on Gs-coupled signaling, as measured by cAMP accumulation (Hu et al., 2000).  

In contrast, PSD-95 interactions with the serotonin 2A receptor (5-HT2AR) facilitate Gq-coupled 

signaling by the receptor (Xia et al., 2003) (Table 2).  PSD-95 has similarly been shown to 

antagonize the agonist-induced endocytosis of 5-HT2AR (Xia et al., 2003).  G protein-coupled 

receptor kinase 5 phosphorylation also disrupts PSD-95 interactions with the 1AR which is 

consistent with a PSD-95/-arrestin competition model (Hu et al., 2002).  Moreover, the 

recruitment of -arrestin2 to the 5-HT2AR corresponds with the dissociation of PSD-95, suggesting 

competitive binding for 5-HT2AR with mechanistic implications for the regulation of endocytosis of 

PSD-95 associated GPCRs (Schmid and Bohn, 2010).  Notably, PSD-95 is documented to have 

an opposing role in 5-HT2CR trafficking, where PSD-95 overexpression is suggested to suppress 

cell surface receptor expression and promote receptor endocytosis (Gavarini et al., 2006).  This 
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decrease in receptor expression at the cell surface is correlated with enhanced desensitization of 

5-HT2CR-mediated Ca2+ accumulation (Gavarini et al., 2006).  In PSD-95 null mice, 5-HT2CR-

mediated cfos induction is impaired (Abbas et al., 2009).  Despite significant sequence homology, 

PSD-95 appears to have opposing roles in regulating their trafficking and signaling pathways of 

the 5-HT2AR and 5-HT2CR (Xia et al., 2003; Gavarini et al., 2006).  PSD-95 was recently suggested 

to form a complex with GPR30, AKAP5 and the PKA RII regulatory subunit thereby promoting 

GPR30 membrane localization and facilitating the constitutive inhibition of cAMP (Akama et al., 

2013; Broselid et al., 2014).  PSD-95 has also been reported to positively regulate dopamine 1 

receptor (D1R) endocytosis and to inhibit D1R-mediated cAMP formation (Zhang et al., 2007).  A 

more recent study suggests that PSD-95 contributes to D1R recycling and resensitization without 

influencing D1R-mediated Gs activation (Sun et al., 2009).  However, the methods and cellular 

contexts utilized to arrive at these conclusions in these various studies are not directly 

comparable.  Nevertheless, this highlights the importance of considering the specific GPCR in 

question when determining the regulatory role of a PDZ domain-containing protein, as well as the 

endogenous trafficking and signaling machineries available within each specific cellular context.   

SAP97 (DLG1): Although synapse-associated protein of 97 kDa (SAP97) shares ~60% sequence 

homology with PSD-95 (including three PDZ domains, an SH3 domain, a GK domain, and an 

additional L27 domain on the amino terminal), less is known about the role of SAP97 in regulating 

GPCR activity (Fig. 1).  Nevertheless, SAP97 has been demonstrated to promote 1AR 

phosphorylation via cyclic AMP-dependent protein kinase (PKA), despite having no effect on 

1AR-stimulated adenylyl cyclase activation and cAMP accumulation (Gardner et al., 2007).  

Additionally, SAP97 promotes recycling of the 1AR by a mechanism that involves the formation 

of a complex between 1AR, AKAP79 and PKA (Gardner et al., 2007; Nooh, et al., 2013; Nooh et 

al., 2014).  In contrast, SAP97 promotes membrane stabilization of the corticotropin-releasing 

factor receptor 1 (CRFR1) by suppressing CRFR1 endocytosis (Dunn et al., 2013).  Although 
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SAP97 does not contribute to the regulation of CRFR1-mediated cAMP accumulation via Gs, 

endogenous SAP97 is essential for CRF-mediated extracellular signal regulated kinase (ERK1/2) 

phosphorylation via the ERK1/2 signaling pathway (Dunn et al., 2013).  In contrast, similar to what 

is observed for PSD-95-mediated enhancement of 5-HT2AR-stimulated inositol phosphate 

formation, the loss of endogenous SAP97 expression results in a reduction in 5-HT2AR-activated 

inositol accumulation via Gq (Xia et al., 2003, Dunn et al., 2014).  However, SAP97 also 

suppresses 5-HT2AR endocytosis and facilitates 5-HT-mediated ERK1/2 phosphorylation.  The 

role of endogenous SAP97 in facilitating CRFR1- and 5-HT2AR-stimulated ERK1/2 

phosphorylation does not require interactions with the PDZ binding motifs of these receptors and 

knockdown of endogenous SAP97 also reduces CRFR2-mediated ERK1/2 phosphorylation 

(Dunn et al., 2013; Dunn et al., 2014).  Since CRFR2 does not encode a PDZ binding motif, it is 

possible that SAP97 may play a global role in regulating GPCR-mediated ERK1/2 activity 

independent of receptor interactions. 

PSD-93 (DLG2) and SAP102 (DLG3): Post-synaptic density protein of 93 kDa (PSD-93) contains 

three PDZ domains, an SH3 domain, and a GK domain (Fig. 1).  Not a great deal is known about 

the role of PSD-93 in regulating GPCRs, but PSD-95 and PSD-93 have previously been 

demonstrated to compensate for one another (Sun and Turrigiano, 2011). Therefore, it is likely 

that both PSD-93 and PSD-95 may play similar roles with respect to GPCR regulation.  PSD-95 

and PSD-93 have been identified to interact with the somatostatin receptor 1 (SSTR1) and SSTR4 

(Christenn et al., 2007) and have both been shown to inhibit NMDAR endocytosis (Lavezzari et 

al., 2003). Future studies are needed to examine the role of PSD-93 in the regulation of GPCR 

trafficking to determine whether its function overlaps with both PSD-95 and SAP97.  Synapse-

associated protein of 102 kDA (SAP102) contains three PDZ domains, an SH3 domain, and a GK 

domain (Fig. 1).  SAP102 has been demonstrated to regulate adenosine A2A receptor (A2AR) 

mobility and promote A2AR-mediated ERK signaling (Thurner et al., 2014).  SAP102 has 
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additionally been identified to regulate the trafficking of AMPA and NMDA receptors. Thus, it is of 

interest in the future to determine whether SAP102 plays a role similar to that of other MAGUK 

proteins in the regulation of GPCR activity. 

DLG5: DLG5 differs from the common topology of the PSD-95 subfamily of MAGUKs with the 

inclusion of an amino terminal caspase activation and recruitment domain (CARD), similar to 

CARMAs, and a fourth PDZ domain (de Mendoza et al., 2010) (Fig. 1).  CARMA3 has been 

implicated in facilitating GPCR-induced activation of NFB via lysophosphatidic acid, endothelin-

1 and angiotensin II (Scudiero et al., 2014).  Although there doesn’t appear to be any examples 

of DLG5 in the direct regulation of GPCRs, DLG5 has been implicated in regulating 

synaptogenesis by enhancing the membrane localization of the transmembrane protein N-

cadherin (Wang et al., 2014).  DLG5 has also been demonstrated to scaffold atypical protein 

kinase C (PKC) isoforms and this provide a mechanism by which DLG5 contributes to the 

regulation of GPCR-mediated signaling (Nechiporuk et al., 2013). 

 

Other GPCR-interacting PDZ Domain-Containing MAGUK Proteins 

Membrane Palmitoylated Proteins and CASK (PALS3, LIN-2): Membrane palmitoylated 

proteins (MPP1/p55, MPP2, MPP3, MPP4, MPP5/PALS1, MPP6/PALS2, and MPP7) are unified 

by the inclusion of a PDZ domain, SH3 domain, and GK domain (Fig. 1).  Additionally, all but 

MPP1 have two amino terminal L27 domains, with MPP5 also including an amino terminal coiled-

coil (CC) domain.  MPP1-2 and MPP5-7 also include a HOOK domain between their SH3 and GK 

domains.  Although MPP proteins are a relatively abundant group of MAGUK proteins, very little 

is known about their regulation of GPCR function.  MPP3 has been demonstrated to promote the 

membrane stability of 5-HT2CR and prevent receptor desensitization (Gavarini et al., 2006).  MPP1 

has additionally been implicated in membrane organization, raft formation, and receptor tyrosine 
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kinase-mediated ERK signaling (Lach et al., 2012; Biernatowska et al., 2013).  Thus, it is plausible 

that MPPs may generally promote the membrane organization of integral proteins including 

GPCRs.   

Ca2+/Calmodulin-activated serine/threonine kinase (CASK) is very similar in topology to 

the MPPs with protein domains that include a catalytically active Ca2+/calmodulin-dependent 

kinase (CaMK) domain at the amino terminal followed by two L27 domains, a PDZ domain, a SH3 

domain, and a GK domain (te Velthuis et al., 2007; Mukherjee et al., 2008) (Fig. 1).  CASK forms 

a tripartite complex with PDZ domain-containing Mint1 and Veli proteins, but the role of Mint1 and 

Veli proteins in the regulation of GPCRs remains undetermined (Butz et al., 1998).  Like MPP3, 

CASK has been shown to interact with 5-HT2CR (Gavarini et al., 2006; Bécamel et al., 2002; 

Bécamel et al., 2004).  Although the functional consequence of this interaction on 5-HT2CR 

trafficking and signaling remains to be tested, CASK has been implicated in regulating the 

trafficking of the NMDAR and AMPAR, partly via its regulation of SAP97 conformation and 

receptor interactions (Jeyifous et al., 2009; Lin et al., 2013).  Interestingly, CASK has been 

demonstrated to interact with PKA, PKC and regulator of G protein signaling 4 (RGS4), which 

may suggest a role for CASK in regulating GPCR-mediated signaling (Hong and Hsueh, 2006).   

 

MAGI PDZ Protein Family 

Membrane-associated guanylate kinase with inverted orientation (MAGI) proteins include 

three proteins with an amino terminal PDZ domain followed by a GK domain, two tryptophan-

tryptophan (WW) domains, and five more PDZ domains (Fig. 1).  MAGI proteins differ from other 

MAGUK proteins in the exclusion of an SH3 domain (Dobrosotskaya et al., 1997).  MAGI-1 

colocalizes with brain angiogenesis inhibitor 1 receptor (BAI-1R) at the cell membrane via an 

interaction with the receptor carboxyl-terminal tail, and MAGI-3 interacts with BAI-1R to promote 
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ERK phosphorylation (Shiratsuchi et al., 1999; Stephenson et al., 2013).  MAGI-3 promotes ERK 

and RhoA signaling mediated by the lysophosphatidic acid receptor 2 (LPA2R), but antagonizes 

ERK1/2 activation in response to the activation of either 1AR or 2AR (Zhang et al., 2007; He et 

al., 2006; Yang et al., 2010).  MAGI-2 interacts with the 1AR via its first PDZ domain and functions 

to promote 1AR endocytosis without affecting 1AR-mediated cAMP signaling (Xu et al., 2001).  

In contrast, MAGI-2 interactions with the vasoactive intestinal peptide receptor 1 (VPAC1) and 

functions to both inhibit VPAC1 endocytosis and suppress VPAC1-mediated cAMP signaling (Gee 

et al., 2009).  MAGI-2 also promotes the cell surface expression of metabotropic glutamate 

receptor 1a (mGluR1a) via its association with the PDZ domain-containing protein tamalin (Sugi 

et al., 2007).  Thus, similar to what has been reported for PSD-95 family PDZ proteins, the MAGI 

family of PDZ proteins contributes to the regulation of the endocytosis and cell signaling of a 

number of GPCRs, but the functional effects of these protein interactions has differential effects 

depending upon the GPCR studied. 

 

NHERF Family of PDZ Proteins 

NHERF1 (EBP50): Na+/H+ Exchanger Regulatory Factor 1 (NHERF1), or ezrin/radixin/moesin 

(ERM)-Binding Protein 50 (EBP50), is a relatively small PDZ domain-containing protein 

characterized by two PDZ domains and a carboxyl terminal ezrin-binding domain (Fig. 2).  

NHERF1 represents one of the earliest PDZ proteins to be shown to interact with a GPCR (Hall 

et al., 1998). NHERF1 regulates Na+/H+ exchange via its interaction with 2AR without altering 

cAMP signaling, and has since been demonstrated to regulate a number of GPCRs.  NHERF1 

regulates the recycling of the 2AR and its binding to the receptor is disrupted by G protein-

coupled receptor kinase phosphorylation of the 2AR at serine residue 411 (Cao et al., 1999).  

However, NHERF1 is reported to inhibit recycling of the parathyroid 1 receptor (PTH1R) (Wang 
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et al., 2007).  NHERF1 also inhibits PTH1R desensitization and endocytosis, a function that 

appears to involve NHERF1-dependent inhibition of -arrestin2 recruitment to the PTH1R (Wang 

et al., 2007; Wang et al., 2009).  NHERF1 expression also enhances PTH1R-mediated cAMP 

signaling and couples PTHR1 to the activation of Gq (Wang et al., 2007; Wheeler et al., 2008; 

Wang et al., 2010).  NHERF1 expression enhances cell surface expression of the  opioid 

receptor inhibiting down-regulation and promoting receptor recycling (Li et al., 2002).  In contrast, 

NHERF1 increases thromboxane receptor  (TP) cell surface expression by blocking the 

internalization of the receptor (Rochdi and Parent, 2003).  An additional mechanism by which 

NHERF1 may increase GPCR membrane targeting is via its competition with the cystic fibrosis 

transmembrane conductance regulator-associated ligand (CAL) to antagonize CAL-mediated 

retention of GPCRs in the Golgi (Bauch et al., 2014). 

In contrast to the role of NHERF1 in antagonizing the endocytosis of the PTHR1 and TP 

NHERF1 is reported to facilitate the endocytosis of a number of GPCRs.  NHERF1 enhances 

CCR5 endocytosis and β-arrestin1 recruitment, thereby promoting the activation of ERK, Rho, 

and FAK signaling pathways, as well as potentially contribute to CCR5-mediated HIV-1 entry 

(Hammad et al., 2010; Kuang et al., 2012).  NHERF1 overexpression also rescues the 

endocytosis of an internalization-defective platelet-activating factor receptor (PAFR) and 

antagonizes PAFR-mediated inositol phosphate formation (Dupré et al., 2012).  Agonist activation 

of the P2Y12 receptor results in the -arrestin-dependent recruitment of NHERF1 to the receptor 

and promotes the formation of a P2Y12 receptor/NHERF1 complex that does not require PDZ-

binding motif interactions (Nisar et al., 2012).  NHERF1 also regulated frizzled family receptor 

activity (Wheeler et al., 2011). Thus, NHERF1 appears to play an integral, but complex, role in 

regulating the endocytosis and recycling of a variety of different GPCRs. 
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NHERF2: The topology of NHERF2 is quite similar to NHERF1 as it shares 44% sequence 

homology with NHERF1 and contains two PDZ domains and a carboxyl terminal ezrin-binding 

domain (Ardura and Friedman, 2011) (Fig. 2).  Similar to NHERF1, NHERF2 contributes to the 

regulation of the PTH1R (Mahon et al., 2002; Wang et al., 2010).   NHERF2 functions to 

antagonize PTHR1 coupling to Gs-coupling, while concomitantly promoting the coupling of 

PTH1R to both the activation of Gq and Gi (Mahon et al., 2002; Wang et al., 2010).  NHERF2 

also interacts directly with PLC to enhance P2Y1 receptor-mediated Ca2+ signaling (Fam et al., 

2005).  Similarly, NHERF2 interacts with PLC3 and the LPA2R allowing for the formation of a 

protein complex that directly links the receptor to PLC3-mediated inositol phosphate signaling 

(Choi et al., 2010; Oh et al., 2004).  NHERF2 and mGluR5 show overlapping expression in mouse 

brain at postsynaptic neuronal sites and astrocytic processes and NHERF2 prolongs the mGluR5-

mediated Ca2+ response (Paquet et al., 2006). 

 

PDZK1 (NHERF3) and PDZK2 (NHERF4): PDZK1, formerly known as NHERF3, differs from 

NHERF1and NHERF2 in structural topology by having four PDZ domains and no carboxyl 

terminal Ezrin-binding domain (Fig. 2).  Nevertheless, PDZK1 has been implicated in regulating 

a subset of GPCRs.  PDZK1 promotes the formation of a complex between SSTRs and PLC3, 

similar to what is observed for the LPA2R (Choi et al., 2010; Oh et al., 2004), thereby facilitating 

somatostatin-stimulated PLC activation, Ca2+ mobilization, and ERK1/2 phosphorylation (Kim et 

al., 2012).  PDZK1 also functions to enhance human prostacyclin receptor (hIPR) cell surface 

localization and cAMP signaling and contributes to endothelial cell migration and angiogenesis 

(Turner et al., 2011).  PDZK1 inhibits 5-HT2AR endocytosis and siRNA knockdown of PDZK1 

results in reduced 5-HT2AR-mediated inositol phosphate accumulation, but is not involved in 5-

HT2AR-stimulated ERK1/2 phosphorylation (Walther et al., 2015).  However, PDZK1 interactions 

with 5-HT2AR do not appear to be required for its regulation of 5-HT2AR activity.  In contrast, 
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although PDZK1 does not regulate CRFR1-mediated cAMP accumulation, unlike what is 

observed for the 5-HT2AR, PDZK1 facilitates CRFR1-mediated ERK1/2 phosphorylation.  Similar 

to PDZK1, PDZK2 also has four PDZ domains and has been shown to regulate hIPR (Reid et al., 

2012).  Agonist activation of the hIPR increases PDZK2 association and results in PKA- and PKC-

mediated phosphorylation of PDZK2 (Reid et al., 2012).  Like PDZK1, PDZK2 also enhances 

hIPR cell surface expression and cAMP accumulation (Reid et al., 2012).  Taken together, PDZK1 

and PDZK2 appear to be important for regulating the trafficking of an increasing subset of GPCRs 

and may bias toward increased Gq signaling, similar to what is observed for both NHERF1 and 

NHERF2.  

 

PDZ Proteins that Regulate Golgi Trafficking  

GIPC (TIP-2, Synectin): Regulator of G protein signaling G-binding protein (RGS-GAIP)-

interacting protein carboxyl terminus (GIPC) is a PDZ domain-containing protein with one PDZ 

domain that is implicated in the sorting of nascent proteins from the Golgi network (Liu et al., 

2001) (Fig. 2).  In regards to GPCRs, GIPC has been shown to target the D2R to endosomes and 

the Golgi apparatus (Jeanneteau et al., 2004).  Furthermore, GIPC expression suppresses D3R 

Gi-coupling and prevents the D3R degradation (Jeanneteau et al., 2004).  GIPC also plays a role 

in regulating both human luteinizing hormone receptor (hLHR) and LPA1R trafficking (Hirakawa 

et al., 2003; Varsano et al., 2012).  The interaction of GIPC with the LPA1R is essential for LPA1R 

trafficking from APPL-positive signaling endosomes to EEA1-positive early endosomes (Varsano 

et al., 2012).  Additionally, GIPC links the LPA1R to the Akt signaling pathway, cell proliferation, 

and cell motility (Varsano et al., 2012).  GIPC also contributes to the suppression of 1AR-

mediated ERK activation, but does affect 1AR-stimulated cAMP accumulation (Hu et al., 2003).   
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CAL (GOPC, PIST):  CAL is also named Golgi-associated coiled-coil and PDZ domain-containing 

protein (GOPC), due to its common subcellular localization within the trans-Golgi network and 

structural topology consisting of two coiled-coil domains and one PDZ domain (Fig. 2). CAL is 

selectively localized to the trans-Golgi network in neurons, as well as other cell types, and 

interacts with Rab6a, a small GTPase implicated in Golgi-related trafficking pathways (Chen et 

al., 2012; Bergbrede et al., 2009; Valente et al., 2010).  CAL reduces plasma membrane 

expression and recycling of the 1AR, and interferes with both 1AR-mediated ERK signaling and 

postendocytotic receptor degradation via the lysosome (He et al., 2004; Koliwer et al., 2015).  

CAL overexpression retains the SSTR5 in the Golgi apparatus, thereby reducing SSTR5 cell 

surface expression (Wente et al., 2005; Bauch et al., 2014).  Additionally, CAL colocalizes with 

mGluR1a following agonist activation and its over-expression decreases mGluR1a-stimulated 

ERK signaling (Zhang et al., 2008).  CAL is suggested to regulate mGluR5a function by increasing 

the expression of the receptor by a mechanism that involves the inhibition of mGluR5a 

ubiquitination (Cheng et al., 2010).  Taken together, it appears CAL could have a regulatory role 

over the subcellular localization of a subset of GPCRs, perhaps by contributing to the post-

translational modification of nascent and mature proteins that ultimately influence the sorting and 

trafficking fate.   

 

Additional GPCR-interacting PDZ Proteins  

Spinophilin (Neurabin-2) and Neurabin-1:  Both spinophilin/neurabin-2 and neurabin-1 contain 

an amino terminal actin-binding domain, a PP1-binding domain, a single PDZ domain, and a 

coiled-coil domain, with neurabin-1 also containing a carboxyl terminal SAM domain (Kelker et 

al., 2007) (Fig. 2).  Spinophilin has been shown to interact with both the D2R and 2AR (Smith et 

al., 1999; Richman et al., 2001; Brady et al., 2003; Wang and Limbird, 2002; Wang et al., 2004).  
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However, these interactions appear to be mediated by the third intracellular loop domains of these 

GPCRs, as opposed to interactions with PDZ binding motifs.  Spinophilin functions to promote 

the membrane localization and inhibit the endocytosis and desensitization of 2ARs by competing 

for -arrestin2 binding (Wang et al., 2004).  The interaction between spinophilin and 2AR is 

prevented by PKA-mediated phosphorylation of spinophilin that results in increased agonist-

stimulated 2AAR endocytosis (Xu et al., 2008).  2AR activation also stimulates PKA-mediated 

spinophilin phosphorylation to increase 2AAR-endocytosis (Cottingham et al., 2013).  

Conversely, spinophilin appears to promote RGS2-mediated inhibition of 2AR-evoked Ca2+ 

signaling and RGS2-mediated modulation of 1AR-NMDAR crosstalk (Wang et al., 2005; Liu et 

al., 2006).  In spinophilin knockout mice, 2AAR exhibits increased G protein-coupling and 

sensitized responses to 2AAR agonists (Lu et al., 2010; Cottingham et al., 2012).  Both 

spinophilin and neurabin-1 are implicated in the D1R-dependent regulation of AMPAR, as well as 

long-term depression and potentiation, respectively (Allen et al., 2006).  Spinophilin promotes 

prostacyclin receptor signaling via Gs and influences both m1AChR and m3AChR activity by 

enhancing RGS8-mediated inhibition of the Gq-coupled signaling (Ma et al., 2012; Fujii et al., 

2008; Kurogi et al., 2009).  Similarly, spinophilin recruits RGS4 to the m3AChR, and like RGS8, 

RGS4 antagonizes m3AChR inositol phosphate signaling (Ruiz de Azua et al., 2012).  Spinophilin 

also promotes -opioid receptor (OR)-mediated signaling via Gi, but inhibits OR-mediated 

ERK activation, while facilitating OR endocytosis (Charlton et al., 2008; Fourla et al., 2012).   

The interaction between spinophilin and opioid receptors appears to occur via the opioid 

receptor third intracellular loop and a conserved region of the carboxyl termini, proximal to the 

seventh transmembrane domain (Fourla et al., 2012).  Interestingly, this region appears to 

correlate with a small helical region identified in many Class A Rhodopsin-like GPCRs as helix 8 

(Huynh et al., 2009).  This domain is suggested to run perpendicularly to the other 7 helical 

transmembrane domains and is initiated by an N-P-x-x-Y motif (Huynh et al., 2009).  In examining 
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the amino acid sequences of Class A Rhodopsin-like GPCRs with this motif, a possible internal 

class I PDZ-binding motif, as characterized by a S/T-x- motif, may be present near this region 

(Trejo, 2005).  Furthermore, homologous regions are found within 2ARs and D2R, which also 

interact with spinophilin via the third intracellular loop domain.  Notably, a recent study has 

identified helix 8 of D2R to associate with the PDZ domain of GIPC (Sensoy and Weinstein, 2015).  

Future studies could look to investigate whether secondary interactions with spinophilin may occur 

within the 2ARs and D2R carboxyl terminal/helix 8, and whether these interactions require 

spinophilin’s PDZ domain. 

 

Shank Proteins:   SH3 and multiple ankyrin repeat domains (Shank1-3) proteins are unified by 

the inclusion of multiple ankyrin repeat domains, a SH3 domain, a PDZ domain, and a sterile 

alpha motif (SAM) domain, however Shank2 lacks the ankyrin repeats (Fig. 2).  Shank1B 

enhances mGluR1/5-mediated ERK1/2 and Ca2+-dependent signaling, and Shank3 is important 

for mGluR5-mediated ERK1/2 and CREB phosphorylation and subsequent mGluR5-mediated 

LTD (Sala et al., 2005; Verpelli et al., 2011).  Furthermore, Shank3 prevents mGluR1-mediated 

inhibition of NMDAR via its association with Homer1A (Bertaso et al., 2010; Guo et al., 2004).  

Similarly, Shank1/3 modulates mAChR1- and D2R-mediated inhibition of L-type Ca2+-channels 

via Homer proteins (Olson et al., 2005).  In regards to GPCR trafficking, Shank influences the 

clustering and subcellular localization of mGluR5 and calcium-independent alpha-

latrotoxin/latrophilin 1 receptor (CL1) (Tu et al., 1999; Tobaben et al., 2000).  Interestingly, a 

Shank/Homer1A complex can suppress NMDAR and AMPAR clustering and surface expression 

(Sala et al., 2003).  Shank1 directly interacts with dynamin-2, which may provide insight into a 

mechanism of action in preventing GPCR-mediated crosstalk mechanisms and receptor surface 

expression (Okamoto et al., 2001).  Future studies could look to investigate the role of Shank 

proteins in regulating GPCR trafficking and the crosstalk between GPCRs and ion channels. 
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Par3 and Par6:  Partitioning defective (Par or PARD) proteins have been implicated in cellular 

polarization and Par3 and Par6 are PDZ domain-containing members of the Par family (Fig. 2) 

(Macara, 2004).  Par3 is implicated as having a role in synaptogenesis as a consequence of its 

interaction with the BAI-1R (Duman et al., 2013).  Additionally, Par3 has been shown to increase 

bradykinin receptor interactions with PLC1 (Choi et al., 2010).  Interestingly, both Par3 and Par6 

interact and catalyze the activation of PLC downstream of heterotrimeric G proteins and form a 

complex with atypical PKCs (Cai et al., 2005; Joberty et al., 2000).  Taken together, these 

observations suggest that Par3 and Par6 may contribute the regulation of GPCR-mediated Gq 

signaling, as well as feedback receptor desensitization by atypical PKCs.  

 

MUPP1:  Multiple PDZ protein 1 (MUPP1) is one of the largest PDZ domain-containing proteins 

and is comprised of an amino terminal L27 domain followed by thirteen PDZ domains (Fig. 2).  

The interaction of MUPP1 with melatonin 1 receptor (MT1R) facilitates MT1R Gi-coupling 

resulting in the inhibition of adenylyl cyclase activity (Guillaume et al., 2008).  MUPP1 has also 

been shown to promote GABAB receptor-mediated Ca2+ signaling, although MUPP1 knockdown 

prolongs the decay of the odorant receptor OR2AG1-mediated Ca2+ response (Balasubramanian 

et al., 2007; Dooley et al., 2009).  In regards to GPCR trafficking, MUPP1 increases the cell 

surface expression of the 5-HT2AR (Jones et al., 2009).  Additionally, MUPP1 promotes the 

targeting of SSTR3 to tight junctions, thereby influencing transepithelial permeability (Liew et al., 

2009; Vockel et al., 2010).  Given that MUPP1 influences NMDA-dependent AMPA trafficking and 

clustering, it is likely that MUPP1 also regulates the trafficking of GPCRs that encode PDZ-binding 

motifs thereby contributing to GPCR-dependent regulation of synaptic activity (Krapivinsky et al., 

2004). 
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Tamalin (GRASP):  Tamalin, or general receptor for phosphoinositides (GRP1)-associated 

scaffold protein (GRASP), encodes a PDZ domain, a leucine zipper, and a class I PDZ-binding 

motif on the distal carboxyl terminal (Kitano et al., 2002; Kitano et al., 2003) (Fig. 2).  Tamalin 

promotes the plasma membrane localization of mGluR1a, as well as the neuritic targeting of 

mGluR5 in hippocampal neurons (Kitano et al., 2002).  Tamalin also interacts with mGluR2, 

mGluR3 and the GABAB2R, but the functional consequence of these interactions remain to be 

determined (Kitano et al., 2002).  In the absence of mGluRs, or potentially other GPCR binding-

partners, tamalin displays an auto-inhibitory confirmation caused by the interaction between the 

tamalin PDZ domain and tamalin PDZ-binding motif (Sugi et al., 2007).  Upon mGluR1a binding 

to the tamalin PDZ domain, the tamalin PDZ-binding motif is free to associate with MAGI-2 to 

further enhance the membrane localization of mGluR1a (Sugi et al., 2007).  PDZ-GEF1/2 also 

contain PDZ-binding motifs and future studies could look to determine whether they similarly 

exhibit auto-regulation (Ogawa et al., 2007; Kuiperij et al., 2003; Kuiperij et al., 2006). 

 

nNOS:  Neuronal nitric oxide synthase (nNOS) contains an amino terminal PDZ domain, a 

flavodoxin-like domain, and a flavin adenine dinucleotide (FAD)-binding domain (Fig. 2).  nNOS, 

in conjunction with RGS17, has been demonstrated to complex with multiple GPCRs, including: 

OR, OR, 5-HT1AR, 5-HT2AR, 2AR, D1R, D2R, m2AChR, m4AChR, mGluR2, mGluR5, and 

cannabinoid receptor 1  (Sánchez-Blázquez et al., 2012).  Activation of these receptors leads to 

the nNOS/NO-dependent recruitment of PKC and Raf-1 to many of these GPCRs.  nNOS also 

facilitates crosstalk between μOR and NMDAR (Rodríguez-Muñoz et al., 2008; Sánchez-

Blázquez et al., 2010; Garzón et al., 2011).  Interestingly, nNOS interacts with both PSD-95 and 

PSD-93, and is targeted to the neuromuscular junction via its interaction with PDZ protein -
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syntrophin (Brenman et al., 1996; Adams et al., 2010).  Although this nNOS interaction with PSD-

95 is suggested to regulate NMDAR activity (Christopherson et al., 1999), it is yet to be 

determined whether these PDZ/PDZ protein interactions regulate GPCR function.   

 

Syntrophins:  -syntrophin, 1-syntrophin and 2-syntrophin all have an amino-terminal PH 

domain interrupted by a PDZ domain, followed by another PH domain and a syntrophin unique 

(SU) calmodulin-binding domain (Fig. 2) (Adams et al., 1995; Ahn et al., 1996; Chen et al., 2006). 

These syntrophins interact with 1DAR and collectively facilitate the functional expression of the 

receptor at the membrane, promoting 1DAR-mediated phosphatidylinositol hydrolysis, ERK1/2 

phosphorylation and Ca2+ mobilization (Chen et al., 2006; Lyssand et al., 2008; Lyssand et al., 

2010; Lyssand et al., 2011).  Neither 1-syntrophin nor 2-syntrophin comparably bind 1DAR 

despite containing one PDZ domain and a PH domain, and their potential role in GPCR regulation 

remains uncertain (Chen et al., 2006).  -syntrophin can additionally scaffold the PDZ protein 

nNOS and notably binds G subunits via its PDZ domain (Brenman et al., 1996; Adams et al., 

2010; Zhou et al., 2005). 

 

PICK1: The protein interacting with C kinase 1 (PICK1) protein encodes one PDZ domain and an 

arfaptin homology domain/BAR (Bin/Amphiphysin/Rvs) domain involved in cell membrane 

interactions (Katsushima et al., 2013) (Fig. 2).  PICK1 promotes the intracellular clustering of the 

prolactin-releasing peptide receptor, influences plasma membrane expression of the growth 

hormone-releasing hormone receptor (GHRHR) and antagonizes GHRHR-mediated cAMP 

signaling (Lin et al., 2001; Katsushima et al., 2013).  PICK1 regulates PKC phosphorylation of 

mGluR7a, regulates the pre-synaptic clustering of mGluR7 and mediates stable mGluR7 cell 

surface expression (Dev et al., 2000; Boudin et al., 2000; Suh et al., 2008).  mGluR7a knock-in 
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mice lacking a PDZ binding motif exhibit deficits in hippocampal-dependent spatial memory and 

are highly susceptible to the convulsant drugs, and the disruption of the mGluR7a-PICK1 complex 

induces epilepsy-like seizures (Zhang et al., 2008; Bertaso et al., 2008).  Taken together, it 

appears PICK1 may be important for regulating the trafficking of a subset of GPCRs and may 

prove important in regulating GPCR-mediated signaling pathways.  Notably, PICK1 can both 

homodimerize and heterodimerize with another PDZ domain-containing protein, syntenin-1 

(Staudinger et al., 1997; Koroll et al., 2001). 

 

Syntenin-1: Syntenin-1 contains two PDZ domains (Fig. 2) and has been found to self-associate, 

as well as heterodimerize with PICK1 and form a complex with mGluR7 (Koroll et al., 2001; Enz 

and Croci, 2003; Hirbec et al., 2002).  Although PICK1 regulates mGluR7 phosphorylation, 

clustering, and membrane expression, it is not yet clear what role syntenin-1 may play in this 

regulation (Dev et al., 2000; Boudin et al., 2000; Suh et al., 2008).  Nonetheless, syntenin-1 has 

been demonstrated to enhance the membrane expression of GPR37 (Dunham et al., 2009).  In 

regards to signaling, syntenin-1 interacts with frizzled-7 (Fzd7) and promotes c-Jun 

phosphorylation, CDC42 activation, and PKC recruitment to the membrane (Luyten et al., 2008).  

Syntenin-1 can also heterodimerize with syntenin-2, although little is known about the role of 

syntenin-2 in GPCR regulation (Koroll et al., 2001).   

 

SNX27:  Sorting nexin-27 (SNX27) differs from other sorting nexins through the inclusion of an 

amino terminal PDZ domain, followed by a Phox homology (PX) domain and a Ras-associating 

domain (Fig. 2).  SNX27 interacts with both 5-HT4AR and 2AR in early endosome antigen 1 

(EEA1)-positive early endosomes (Joubert et al., 2004; Lauffer et al., 2010).  Moreover, SNX27 

is involved in regulating the recycling of the 2AR, 1AR, and SSTR5, thereby preventing receptor 
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degradation (Lauffer et al., 2010; Temkin et al., 2011; Nakagawa and Asahi, 2013; Bauch et al., 

2014).  The regulation of 2AR recycling by SNX27 is dependent upon PX domain-mediated 

associations with the endosomal membrane (Lauffer et al., 2010).  Furthermore, SNX27 interacts 

with the endosomal WASH complex to target the 2AR to the retromer tubule for efficient recycling 

(Temkin et al., 2011).  Taken together, it appears SNX27 is capable of promoting the endosomal 

sorting and recycling of a subset of GPCRs, a role that may be generalizable to several other 

PDZ motif-encoding GPCRs. 

 

PDZ-GEFs (RAPGEFs, CNrasGEF, RA-GEF): PDZ domain-containing guanine nucleotide 

exchange factors (PDZ-GEF1 and PDZ-GEF2) share approximately 56% sequence homology 

and include one or two cyclic nucleotide-binding domains, respectively, an N terminal Ras GEF 

domain, a PDZ domain, a Ras-associating domain, and Ras GEF catalytic domain within their 

molecular structure (Kuiperij et al., 2003; Kuiperij et al., 2006) (Fig. 2).  Similar to the PDZ domain-

containing protein tamalin, PDZ-GEF1/2 have also been reported to contain a class I PDZ-binding 

motif at their carboxyl termini, suggesting a capability for homo/hetero-oligomerization with PDZ 

domain-containing proteins, or perhaps even auto-regulatory capability via self-association 

(Ogawa et al., 2007; Kuiperij et al., 2003; Kuiperij et al., 2006).  Our current understanding of 

PDZ-GEF2 regulation of GPCRs is poor, but PDZ-GEF1 couples the 1AR to the activation of Ras 

(Pak et al., 2002).  Furthermore, PDZ-GEF1 is essential for coupling the pituitary adenylate 

cyclase-activating polypeptide type I receptor to the ERK1/2 signaling pathway and the 

subsequent activation of neuritogenesis, with no effect on cAMP accumulation (Emery et al,. 

2013).   

 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on March 25, 2015 as DOI: 10.1124/mol.115.098509

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL Manuscript # 98509 
 

24 
 

RGS Proteins with PDZ domains (PDZ-RhoGEF, LARG, RGS3, and RGS12): PDZ-RhoGEF 

and leukemia-associated RhoGEF (LARG) are members of the regulators of G protein signaling 

(RGS) homology domain-containing RhoGEF (RH-RhoGEF) subfamily and include an amino 

terminal PDZ domain, a RGS-homology domain, a RhoGEF domain, and a pleckstrin-homology 

(PH) domain (Fig. 2).  LARG transduces Gq/12/13 activation into Rho activation via GPCRs such 

as the Mas receptor, G2 accumulation receptor, mACh1R, AT1R, sphingosine-1 phosphate 

receptor 2, histamine H1 receptor, thromboxane A2 receptor, and endothelin 1 receptor (Booden 

et al., 2002; Ying et al., 2006; Chiu et al., 2012; Del Galdo et al., 2013; Medlin et al., 2010; Pfreimer 

et al., 2012; Artamonov et al., 2013).  Similarly, PDZ-RhoGEF is proposed contribute to gastrin-

releasing peptide receptor-mediated activation of Rho/ROCK pathway via G13 (Patel et al., 

2014).  Finally, both PDZ-RhoGEF and LARG have been implicated in sustaining Rho activation 

following thrombin and LPA receptor activation (Chikumi et al., 2002; Wang et al., 2004; Yamada 

et al., 2005).  Interestingly, both proteins appear capable of homo- and hetero-dimerization 

(Chikumi et al., 2004).   

RGS12 contains one PDZ domain, a phosphotyrosine-binding domain (PTB), a RGS 

domain, two Ras-binding domains, and a GoLoco motif (Fig. 2).  The RGS12 PDZ domain binds 

to the interleukin-8 receptor B PDZ binding motif, but the functional consequence of this 

interaction is not well defined (Snow et al., 1998).  Notably, RGS12 has been suggested to couple 

D2R to inward rectifier potassium channels Kir3.1/3.2 (Oxford and Webb, 2004).  Regulator of G 

protein signaling 3 (RGS3) contains a membrane-targeting C2 domain, one PDZ domain, and an 

RGS domain (Fig. 2).  RGS3 has been identified to inhibit Gαq- and Gαi-mediated signaling by 

acting as a GTPase-activating protein (Scheschonka et al., 2000).  RGS3 antagonizes Gαq/11 

signaling via pheromone P factor receptor and mAChR3 activation and RGS3 promotes Ca2+ 

oscillatory behaviour during submaximal mAChR3 activation (Ladds et al., 2007; Anger et al., 

2004; Wang et al., 2002; Anger et al., 2007; Karakoula et al., 2008; Tovey and Willars, 2004).  
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RGS3 also antagonizes follicle-stimulating hormone receptor- and luteinizing hormone receptor-

mediated inositol phosphate and cAMP accumulation (Castro-Fernandez et al., 2004).  

Furthermore, RGS3 has been demonstrated to suppress Gαi-mediated signaling pathways via 

OR, mAChR1, complement C5a receptor, and 2AR, and even promote a Gs bias for β2AR 

(Potenza et al., 1999; Anger et al., 2007; Nishiura et al., 2009; Chakir et al., 2011).  In contrast, 

RGS3 was shown to inhibit gonadotropin-releasing hormone receptor-stimulated inositol 

phosphate signaling via Gq, but had no effect on cAMP signaling (Neill et al., 1997; Neill et al., 

2001; Castro-Fernandez et al., 2002; Castro-Fernandez and Conn, 2002; Karakoula et al., 2008).  

Interestingly, RGS3 palmitoylation is increased following GRHR activation (Castro-Fernandez et 

al., 2002).  Curiously, truncated RGS3 isoforms that have been reported to lack the amino terminal 

and PDZ domain have also demonstrated a role in influencing GPCR activity, including S1PR1-3, 

AT1R, ET1R, GRHR, 5-HT1AR, and mAChR2/3 (Druey et al., 1996; Cho et al., 2003; Castro-

Fernandez et al., 2003; Jaén and Doupnik, 2005; Anger et al., 2004; Anger et al., 2007).  

Distinguishing the role of LARG, PDZ-RhoGEF, RGS3, and RGS12 PDZ domain interactions, as 

opposed to RGS domain interactions with heterotrimeric G proteins, in the regulation of GPCR 

signaling remains a challenge.   

 

Role PDZ Proteins in GPCR-regulated Physiology  

PSD-95 Family of MAGUK PDZ Proteins:  The PDZ domain-containing MAGUK proteins play 

an essential role in human neurophysiology and development.  This is demonstrated in mouse 

knockout studies, where PSD-95 and PSD-93 double-knockout mice exhibit severe deficiencies 

in AMPA currents, and SAP97 knockout mice show neonatal lethality (Caruana and Bernstein, 

2001; Howard et al., 2010).  Of particular interest is the observation that PSD-95 is essential for 

hallucinogenic and atypical antipsychotic actions of 5-HT2AR and 5-HT2CR (Abbas et al., 2009).  

In addition to being involved atypical antipsychotic actions (Abbas et al., 2009), PDZ protein 
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interactions with GPCRs also appear important regulating stress and anxiety responses 

(Magalhaes et al., 2010).  Pre-activation of the CRFR1 receptor sensitizes 5-HT2AR-stimulated IP 

formation dependent upon intact PDZ binding motifs in both receptors, receptor endocytosis and 

recycling (Magalhaes et al., 2010).  Furthermore, the phenomenon can be blocked by a Tat-

tagged fusion protein corresponding to the last 15 amino acids of the CRFR1 tail.  In addition, 

pre-treatment of mice with sub-threshold doses of CRF into the prefrontal cortex sensitizes mouse 

anxiety responses to DOI treatment (Magalhaes et al., 2010).  Thus, it is possible that PDZ protein 

interactions may serve as a good pharmaceutical target for the treatment of disease.  

 SAP102 is important during early synaptic development and SAP97 appears to be 

important in SSTR1-mediated growth cone dynamics, as evidenced by colocalization within the 

growth cone (Kim and Sheng, 2004; Elias et al., 2006; Cai et al., 2008).  However, this role may 

not be limited to SAP97 and may include additional PDZ domain-containing proteins (Cai et al., 

2008).  PSD-95 plays a functional role in synaptic plasticity and contributes to GPCR-mediated 

regulation of both long-term potentiation, and long-term depression (Xu, 2011).  Notably, SAP97 

also modulates the ability to regulate AMPA and NMDA receptors by promoting synaptic 

trafficking of these receptors (Howard et al., 2010).  Acute overexpression of SAP97 in 

hippocampal slice cultures restored synaptic transmission in PSD-95/PSD-93 double knockout 

mice, and long-term overexpression of SAP97 throughout development led to enhancements in 

synaptic transmission in vivo (Howard et al., 2010).  This regulation of NMDAR- and AMPAR-

mediated synaptic transmission is likely to also involve a role of GPCRs.  PSD-95 is reported to 

have an important role in regulating the trafficking dynamics of D1R in striatal neurons, and this 

regulatory role may contribute to L-DOPA-induced dyskinesia (Porras et al., 2012).  Thus, the role 

of PSD-95 in regulating D1R dynamics may be complicated by its ability to disrupt the formation 

of D1R/NMDAR complexes, a function which potentially may be directly associated with its role 

in the regulation of synaptic activity (Zhang et al., 2009).  The association of PSD-95 with the 
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1AR allows it to form a complex with the NMDAR and this may contribute to the regulation of 

synaptic activity by adrenergic ligands (Hu et al., 2000).   

 

Other PDZ Proteins:  There are a number other examples of PDZ proteins regulating GPCR-

mediated regulation of physiological functions.  In the immune system it has been found that the 

interaction of NHERF1 with complement component C3a receptor is required for C3a-mediated 

mast cell degranulation, NFB-activation and chemokine production (Subramanian et al., 2012).  

CCR5 functions as a co-receptor for HIV-1 viral entry into mammalian cells by functioning as a 

cofactor for the entry of the virus (Henrich and Kuritzkes, 2013).  NHERF1 interactions with CCR5 

function to enhance actin filament rearrangement of host cells: a function that is essential to allow 

post-cell entry HIV-1 replication (Hammad et al., 2010; Kuang et al., 2012).  PDZK1 interactions 

with hIPR selectively facilitate hIPR-dependent activation of endothelial migration and vascular 

angiogenesis in vitro (Turner et al., 2011).  MUPP1, the largest of the PDZ domain-containing 

adaptor protein promotes the targeting of SSTR3 to tight junctions and consequently influences 

trans-epithelial permeability of skin cells (Liew et al., 2009; Vockel et al., 2010).  Tamalin plays an 

important role in regulating mGluR signaling and tamalin knockout mice exhibit differences in their 

acute and adaptive responses to morphine administration. (Ogawa et al., 2007).  Similarily, nNOS 

mediates a mechanism of crosstalk between OR and NMDA receptors to regulate opioid 

tolerance and analgesia (Rodríguez-Muñoz et al., 2008; Sánchez-Blázquez et al., 2010; Garzón 

et al., 2011).  PICK1 interactions with mGluR7a have been shown to be important for pre-synaptic 

mGluR7a clustering, and mGluR7a knock-in mice lacking a PDZ binding motif exhibit deficits in 

hippocampal-dependent spatial memory and the disruption of the mGluR7a-PICK1 complex 

induces epileptic-like seizures (Boudin et al., 2000; Zhang et al., 2008; Bertaso et al., 2008).  -

syntrophin and 2-syntrophin knockout mice display normal systolic blood pressure and resting 

heart rate, however a double knockout prevents 1DAR-mediated blood pressure responses and 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on March 25, 2015 as DOI: 10.1124/mol.115.098509

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL Manuscript # 98509 
 

28 
 

exhibits a distinct hypotonic phenotype at rest, thereby demonstrating the capability for PDZ 

protein compensation in vivo (Lyssand et al., 2008). 

 

Concluding Remarks 

 GPCRs are influential in the regulation of every aspect of human physiology.  Therefore, 

any advancement in the understanding of how they can be regulated could contribute to the 

design and development of new pharmacological treatment and prevention strategies for a 

multitude of human diseases (Bockaert et al., 2010; Heng et al., 2013).  Accordingly, it is 

becoming clear that PDZ proteins play an important role in the regulation of GPCR signaling and 

trafficking.  Considering it is estimated that 20% of GPCRs have PDZ-binding motifs, and over 

800 GPCRs have been identified in the human genome, it is safe to assume that this field is still 

in its infancy (Lee and Zheng, 2010; Fredriksson et al., 2003).  Nevertheless, our growing 

understanding of the functional specificities and redundancies in PDZ regulation of GPCRs may 

lead to the development of new pharmacological compounds for precise modulation of GPCR 

activity.  Such a strategy could be pertinent in the pharmacological treatment of a multitude of 

human pathologies including but not limited to mental illnesses, cystic fibrosis, and osteoporosis 

(Abbas et al., 2009; Magalhaes et al., 2010; Holcomb et al., 2014; Mahon, 2012). 
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Figure 1: Molecular topology of protein-protein interaction domains found in MAGUK family PDZ 

proteins. CaMKII, Ca2+/Calmodulin-dependent kinase domain; CARD, Caspase activation and recruitment 

domain; CC, coiled‐coiled domain; GK, Guanylate kinase‐like domain; L27, L27 domain; PDZ, PDZ domain; 

SH3, Src homology 3 domain WW, tryptophan‐tryptophan domain. 

 

Figure 2: Molecular topology of other PDZ domain-containing proteins that interact with GPCRs. 

ABD, actin binding domain; ANK, ankyrin repeat domain; AH, Arfaptin homology domain; C2, C2 domain; 

CC, coiled‐coiled domain; cNBD, Cyclic nucleotide binding domain; EBD, Ezin‐binding domain; FAD, FAD‐

binding domain; FDX, flavodoxin‐like domain; G, Golocco motif; GEF‐CD, Ras GEF catalytic domain; GEF‐

N, Ras‐like GEF, N‐terminal domain; L27, L27 domain; PDZ, PDZ domain; PB1, Phox/Bem1 domain; PH, 

pleckstrin homology domain; PHA/B, interrupted pleckstrin homology domain; PP1, PP1‐binding domain; 

PTB, phosphtyrosine‐binding domain; PX, Phox‐homolgy domain; RA, Ras association domain; RB, Ras‐

binding domain; RGS, RGS domain; RGSL, RGS‐like domain; RhoGEF, RhoGEF domain; SAM, Sterile alpha 

motif; SU, syntrophin unique domain; SH3, Src homology 3 domain.  
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Table 1: Effect of PDZ proteins on GPCR trafficking 

 

 
 
  

PDZ Protein Trafficking Function GPCR Reference 
PSD-95 ↓ endocytosis 1AR, 5-HT2AR Hu et al., 2000; Xia et al 2003 

 ↑ recycling D1R Sun et al., 2009 

 ↑ membrane localization GPR30 Akama et al., 2013; Broselid et al., 2014 

 ↑ endocytosis 5-HT2CR, D1R Gavarini et al., 2006; Zhang et al., 2007 

SAP97 ↓ endocytosis CRFR1, 5-HT2AR Dunn et al., 2013; Dunn et al., 2014 

 ↑ recycling 1AR Gardner et al., 2007 

SAP102 ↓ mobility A2AR Thurner et al., 2014 

MPP3 ↑ membrane localization 5-HT2CR Gavarini et al., 2006 

MAGI-2 ↓ endocytosis VPAC1 Gee et al., 2009 

 ↑ endocytosis 1AR Xu et al., 2001 

 ↑ membrane localization mGluR1a Sugi et al., 2007 

NHERF1 ↓ endocytosis 2AR, TP Wang et al., 2007; Rochdi and Parent, 2003 

 ↑ recycling 2AR , hκ-OR Cao et al., 1999; Li et al., 2002 

 ↑ membrane localization SSTR5, PTH1R Bauch et al., 2014; Wheeler et al., 2008 

 ↑ microvilli localization 5-HT4AR Joubert et al., 2004 

 ↑ cytoskeletal localization Fzd4 Wheeler et al., 2011 

 ↑ endocytosis CCR5, PAFR, P2Y12R Hammad et al., 2010; Dupré et al., 2012; 
Nisar et al., 2012 

PDZK1 ↓ endocytosis 5-HT2AR Walther et al., 2015 

 ↑ membrane localization hIPR Turner et al., 2011 

PDZK2 ↑ membrane localization hIPR Reid et al., 2012 

Shank1 ↑ clustering mGluR5, CL1 Tu et al., 1999; Tobaben et al., 2000 

Spinophilin ↓ endocytosis 2AR Brady et al., 2003 

 ↑ endocytosis OR Charlton et al., 2008 

MUPP1 ↑ membrane localization 5-HT2AR Jones et al., 2009 

 ↑ tight junction localization SSTR3 Liew et al., 2009 

Tamalin ↑ membrane localization mGluR1 Kitano et al., 2002; Sugi et al., 2007 

 ↑ neurite localization mGluR5 Kitano et al., 2002 

Syntrophins ↑ membrane localization 1DAR Chen et al., 2006; Lyssand et al., 2008; 
Lyssand et al., 2011 

PICK1 ↑ intracellular clustering GPR10 Lin et al., 2001; Madsen et al., 2012 

 ↓ recycling GHRHR Katsushima et al., 2013 

Syntenin-1 ↑ membrane localization GPR37 Dunham et al., 2009 

SNX27 ↑ recycling 2AR, 1AR, SSTR5 Lauffer et al., 2010; Temkin et al., 2011; 
Nakagawa and Asahi, 2013; Bauch et al., 
2014 

GIPC ↑ endosome/golgi localization D2R, D3R Jeanneteau et al., 2004 

 ↑ trafficking to early endosome LPA1R Varsano et al., 2012 

 ↑ membrane stability hLHR Hirakawa et al., 2003 

CAL ↓ membrane localization 1AR, SSTR5 He et al., 2004; Koliwer et al., 2015; Bauch et 
al., 2014 

 ↓ recycling 1AR Koliwer et al., 2015 

 ↑ golgi localization SSTR5 Wente et al., 2005; Bauch et al., 2014 
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Table 2: Effect of PDZ proteins on GPCR Signaling 
PDZ Protein Signaling Function GPCR Reference 
PSD-95 ↑ IP3 5-HT2AR Xia et al., 2003 

 ↑ c-fos  5-HT2CR Abbas et al., 2009 

 ↑ desensitization of Ca2+ 5-HT2CR Gavarini et al., 2006 

 ↓ or = cAMP D1R Zhang et al., 2007; Sun et al., 2009 

SAP97 ↑ IP3 5-HT2AR Dunn et al., 2014 

 ↑ ERK CRFR1, CRFR2, 5-HT2AR Dunn et al., 2013; Dunn et al., 2014 

SAP102 ↑ ERK AA2R Thurner et al., 2014 

MPP3 ↓ desensitization of Ca2+ 5-HT2CR Gavarini et al., 2006 

MAGI-2 ↓ cAMP VPAC1 Gee et al., 2009 

MAGI-3 ↑ ERK BAI1, LPA2R Stephenson et al., 2013; Zhang et al., 2007 

 ↑ Rho LPA2R Zhang et al., 2007 

 ↓ ERK 1AR, 2AR He et al., 2006; Yang et al., 2010 

NHERF1 ↓ desensitization of cAMP PTH1R Wang et al., 2007 

 ↓ cAMP PTH1R Wheeler et al., 2008; Wang et al., 2007 

 ↑ Gαq coupling and activation PTH1R Wang et al., 2010 

 ↑ ERK CCR5 Hammad et al., 2010; Kuang et al., 2012 
 

 ↑ FAK, ↑ Rho CCR5 Kuang et al., 2012 

 ↓ -catenin Fzd2/4 Wheeler et al., 2011 

NHERF2 ↑ Gq coupling and PLC activation PTH1R Wang et al., 2010; Mahon et al., 2002 

 ↑ Gαi coupling and ↓ AC activation PTH1R Wang et al., 2010; Mahon et al., 2002 

 ↑ PLC interaction P2Y1, LPA2R Fam et al., 2005; Choi et al., 2010 

 ↑ IP3 and ERK LPA2R Oh et al., 2004 

 ↑ Ca2+ P2Y1, mGluR5 Fam et al., 2005; Paquet et al., 2006 

PDZK1 ↑ PLC interaction and activation SSTR5 Kim et al., 2012 

 ↑ IP3 SSTR5, 5-HT2AR Kim et al., 2012; Walther et al., 2015 

 ↑ Ca2+ SSTR5 Kim et al., 2012 

 ↑ ERK SSTR5, CRFR1 Turner et al., 2011; Walther et al., 2015 

 ↑ cAMP hIPR Turner et al., 2011 

PDZK2 ↑ cAMP hIPR Reid et al., 2012 

Shank1 ↑ Ca2+ and ERK mGluR1/5 Sala et al., 2005 

Shank3 ↑ ERK and CREB phosphorylation mGluR5 Verpelli et al., 2011 

Par3 ↑ PLC interaction B2R Choi et al., 2010 

Spinophilin ↓ Ca2+ 2AR, M1R, M3R Wang et al., 2005; Fujii et al., 2008; Kurogi et al., 2009; 
Ruiz de Azua et al., 2012 

 ↓ Gαi coupling 2AR, A1R  Lu et al,. 2010; Chen et al., 2012 

 ↑ cAMP IPR  Ma et al., 2012 

 ↑ Gi coupling OR Charlton et al., 2008; Fourla et al., 2012 

 ↓ or ↑ ERK OR Charlton et al., 2008; Fourla et al., 2012 

 ↑ Gi coupling OR Fourla et al., 2012 

 ↓ ERK OR Fourla et al., 2012 

MUPP1 ↓ Gi coupling MT1R Guillaume et al., 2008 

 ↑ Ca2+ GABAB Balasubramanian et al., 2007 

 ↑ Ca2+ decay OR2AG1 Dooley et al.,2009 

nNOS ↑ PKC interaction OR, 5-HT1AR, 5-HT2AR, D2R, M4R, CB1R Sanchez-Blazquez et al., 2012 

Syntrophins ↑ IP3, Ca2+ and ERK 1DAR Lyssand et al., 2008; Lyssand et al., 2011 

PICK1 ↓ cAMP GHRHR Katsushimi et al., 2013 

Syntenin-1 ↑ c-Jun, CDC42, and PKC Fzd7 Luyten et al., 2008 

GIPC ↓ Gi coupling D3R Jeanneteau et al., 2004 

 ↑ Akt LPA1R Varsano et al., 2012 

 ↓ ERK 1AR Hu et al., 2003 

CAL ↓ ERK mGluR1, 1AR Zhang et al., 2008; Koliwer et al., 2015 

PDZ-GEF1 ↑ Ras  β1AR Pak et al., 2002 

 ↑ ERK  PAC1R Emery et al., 2013 

LARG ↑ Rho AT1R, S1PR2, ET1R, M1R, GPR132, H1R, 
TP, MAS1 

Booden et al., 2002; Ying et al., 2006; Chiu et al., 2010; 
Del Galdo et al., 2013; Medlin et al., 2010; Pfreimer et 
al., 2012; Artamonov et al., 2013 

PDZ-RhoGEF ↑ Rho GRPR Patel et al., 2014 

RGS3 ↓ Gαq and Gα11 activation Mam2 Ladds et al., 2007 

 ↓ IP3 M3R, GRHR, LHR, FSHR, PAR1 Anger et al., 2004; Tovey and Willars, 2004; Karakoula 
et al., 2008; Castro-Fernandez et al., 2004; Neill et al., 
1997; Neill et al., 2001; Castro-Fernandez and Conn, 
2002; Castro-Fernandez et al., 2002; Chen et al., 2014 

 ↓ DAG M3R, GRHR Karakoula et al., 2008 

 ↓ Ca2+ M3R, ET1R Tovey and Willars, 2004; Dulin et al., 1999 

 ↓ ERK M2R, M3R, C5aR, ET1R Anger et al., 2007; Wang et al., 2002; Nishiura et al., 
2009; Dulin et al., 1999 

 ↓ Akt M2R, M3R Anger et al., 2007 

 ↓ cAMP LHR, FSHR Castro-Fernandez et al., 2004 

 ↓ Gαi-mediated signaling μOR, D2R, β2AR Potenza et al., 1999; Chakir et al., 2011 

 ↑ Gαs-mediated signaling β2AR Chakir et al., 2011 
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