Discovery and characterization of nonpeptidyl agonists of the tissue-protective erythropoietin receptor

James L. Miller, Timothy J. Church, Dmitri Leonoudakis, Karen Lariosa-Willingham, Normand L. Frigon, Connie S. Tettenborn, Jeffrey R. Spencer, and Juha Punnonen

STATegics, Inc., 1455 Adams Dr., Menlo Park, CA 94025.
Nonpeptidyl agonists of the tissue-protective EPO receptor

Corresponding author:
James L. Miller, PhD
STATegics, Inc.
1455 Adams Dr.
Menlo Park, CA 94025
Telephone: (650) 248-7944
Fax:
E-mail: jim.miller@stategics.com

Number of text pages: 39
Number of tables: 0
Number of figures: 5
Number of references: 72
Number of words in Abstract: 247
Number of words in Introduction: 746
Number of words in Discussion: 1488
List of nonstandard abbreviations:
AKT, v-akt murine thymoma viral oncogene homolog 1; BBB, blood-brain-barrier; BCA, bicinchoninic acid; BSA, bovine serum albumin; CEPO, carbamoylated erythropoietin; CD131, colony stimulating factor 2 receptor, beta, low-affinity (CSF2RB); CNS, central nervous system; DMEM, Dulbecco’s modified Eagles medium; DMSO, dimethyl sulfoxide; DNase I, deoxyribonuclease I; DPBS, Dulbecco’s phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay; EPO, erythropoietin; EPOR, erythropoietin receptor; EPOR/EPOR, homodimeric erythropoietin receptor; EPOR/CD131, tissue-
protective heteromeric receptor; FBS, fetal bovine serum; G-CSF, granulocyte colony-stimulating factor; HBSS, Hank’s balanced salt solution; HPLC, high performance liquid chromatography; JAK2, Janus kinase 2; KIU, Kallikrein inhibitory units; LC-MS/MS, Liquid chromatography-tandem mass spectrometry; LDH, lactate dehydrogenase; MEM Minimum essential medium; PAMPA, Parallel artificial membrane permeability assay; rhEPO, recombinant human erythropoietin; RLU, relative luminescence units; RPMI, Roswell Park Memorial Institute medium; RPTEC, human renal proximal tubule epithelial cells; SAR, structure-activity relationship; TEER, trans-epithelial electrical resistance; TPO, thrombopoietin; TPOR, thrombopoietin receptor.
ABSTRACT

Erythropoietin (EPO) and its receptor are expressed in a wide variety of tissues, including the central nervous system. Local expression of both EPO and its receptor is upregulated upon injury or stress and plays a role in tissue homeostasis and cytoprotection. High-dose systemic administration or local injection of recombinant human EPO has demonstrated encouraging results in several models of tissue protection and organ injury, while poor tissue availability of the protein limits its efficacy. Here, we describe the discovery and characterization of the nonpeptidyl compound STS-E412, which selectively activates the tissue-protective EPO receptor, comprising an EPO receptor subunit (EPOR) and the common beta-chain (CD131). STS-E412 triggered EPO receptor phosphorylation in human neuronal cells. STS-E412 also increased phosphorylation of EPOR, CD131 and the EPO-associated signaling molecules JAK2 and AKT in HEK-293 transfectants expressing EPOR and CD131. At low nanomolar concentrations, STS-E412 provided EPO-like cytoprotective effects in primary neuronal cells and renal proximal tubular epithelial cells. The receptor selectivity of STS-E412 was confirmed by a lack of phosphorylation of the EPOR/EPOR homodimer, lack of activity in off-target selectivity screening, and lack of functional effects in erythroleukemia cell line TF-1 and CD34+ progenitor cells. Permeability through artificial membranes and Caco-2 cell monolayers in vitro and penetrance across the blood-brain barrier in vivo suggest potential for CNS availability of the compound. To our knowledge, STS-E412 is the first nonpeptidyl, selective activator of the tissue-protective EPOR/CD131 receptor. Further evaluation of the potential of STS-E412 in CNS diseases and organ protection is warranted.
Introduction

Erythropoietin (EPO) is a pleiotropic cytokine primarily known as the key regulator of erythroid progenitor cell differentiation (Jacobson et al., 1957). EPO is synthesized in the renal cortex in response to erythropoietic signaling, and the distribution of EPO thus produced is generally restricted to the vasculature (Eckardt and Kurtz, 2005). EPO also exhibits broad cytoprotective and neuroprotective effects in vitro and in vivo. Biosynthesis of EPO mediating cytoprotection occurs locally in tissues, and EPO and EPO receptor (EPOR) expression increase following injury (Juul et al., 1998, Grasso et al., 2005). EPOR can be detected in neurons, astrocytes, and microglia in the central nervous system (CNS) and in multiple peripheral organs, including the heart, kidney, liver, lung, pancreas, and skeletal muscle (Liu et al., 1997, Juul et al., 1998, David et al., 2002, Calvillo et al., 2003, Assaraf et al., 2007, Medana et al., 2009, Joshi et al., 2014).

The receptors mediating erythropoiesis and neuroprotection by EPO are distinct. A homodimeric receptor comprising two EPOR mediates erythropoiesis, while the cytoprotective effects of EPO are mediated by a heteromeric receptor composed of EPOR and the GM-CSF/IL-3/IL-5 receptor common beta-chain (CD131, CSF2RB) (Jubinsky et al., 1997, Brines et al., 2004, Leist et al., 2004, Chateauvieux et al., 2011). CD131 physically associates with the EPOR (Jubinsky et al., 1997, Brines et al., 2004, Bennis et al., 2012). Recombinant human EPO (rhEPO) induces phosphorylation of CD131 in UT-7 cells (Hanazono et al., 1995) and transfection of CD131 into EPOR-expressing Ba/F3 cells enhances the proliferative effects induced by rhEPO (Jubinsky et al., 1997). No protective effects of EPOR agonists are observed in CD131-deficient mice (Brines et al., 2004), and CD131 is crucial for rhEPO’s anti-apoptotic effects in endothelial cells (Su et al., 2011, Bennis et al., 2012). Like EPOR, the expression of CD131 is upregulated following tissue injury; demonstrated by co-localization and upregulation of human EPOR and CD131 in muscle fiber sarcolemma during critical limb ischemia (Joshi et al., 2014).

RhEPO demonstrates beneficial effects in preclinical and early clinical studies in several CNS diseases, such as Friedreich’s ataxia, ischemic stroke, multiple sclerosis, Parkinson’s disease, spinal cord injury, and traumatic brain injury (Konishi et al., 1993, Sakanaka et al., 1998, Brines et al., 2000,
Erbayraktar et al., 2003, Puskovic et al., 2006, Savino et al., 2006, Mammis et al., 2009, Ehrenreich et al., 2011, Nachbauer et al., 2011, Jang et al., 2014). Achieving therapeutically meaningful levels of rhEPO in the CNS with an intact blood-brain-barrier (BBB) requires direct intracranial injection or high-dose systemic administration. High-dose rhEPO, however, is associated with a risk of side effects, including thrombotic events (Drüeke et al., 2006, Singh et al., 2006); therefore, a selective EPOR/CD131 agonist may have a therapeutic advantage over rhEPO for CNS indications.

Selective activation of the EPOR/CD131 receptor was reported using recombinant EPO variants and EPO mimetic peptides. For example, carbamoylated EPO (CEPO), desialylated derivatives of EPO, and several EPO-derived peptides signal via the tissue-protective EPOR/CD131 without any measurable erythropoietic activity (Erbayraktar et al., 2003, Brines et al., 2004, Leist et al., 2004, Coleman et al., 2006, Brines and Cerami, 2008, Brines et al., 2008, Ahmet et al., 2011, Chen et al., 2012). CEPO provided potent neuroprotection with efficacy comparable to high-dose rhEPO in vivo (Leist et al., 2004). However, CEPO exhibits pharmacokinetic properties similar to rhEPO (Leist et al., 2004), likely limiting the therapeutic applicability of this variant for indications where tissue-availability is critical.

Small molecules have potential advantages over proteins, particularly when tissue permeability or CNS availability is desired. Agonists of several cytokine receptors, including the receptors for granulocyte colony-stimulating factor (G-CSF) (Tian et al., 1998) and thrombopoietin (TPO) (Erickson-Miller et al., 2005, Desjardins et al., 2006, Dziewanowska et al., 2007, Kim et al., 2007, Kalota and Gewirtz, 2010, Abe et al., 2011) have been described, and the TPO receptor (TPOR) agonist eltrombopag is FDA-approved for the treatment of thrombocytopenia (Kuter, 2013). The feasibility of discovering small molecule agonists of receptors for EPO was also supported by the small allosteric peptide agonists that activated the EPOR/EPOR homodimer and triggered EPO-like biological activity (Naranda et al., 1999, Naranda et al., 2002).

We identified a series of nonpeptidyl compounds that selectively activate the tissue-protective EPOR/CD131 heteromeric receptor. The compound designated STS-E412 activates the EPOR/CD131 receptor at low nanomolar concentrations but does not activate the EPOR/EPOR homodimer. STS-E412
exhibits potent, EPO-like cytoprotective effects in primary human neuronal cells, rat hippocampal neurons, and human renal proximal tubule epithelial cells (RPTEC) following a range of cytotoxic challenges.
Materials and Methods

Materials. Unless otherwise indicated, the reagents for these studies were obtained from the following sources: Roche Pharma AG (rhEPO, NeoRecormon®); Peprotech, [recombinant human IL-3 (rhIL-3)]; HyClone/Thermo Fisher, [Dulbecco's modified Eagles medium (DMEM) and minimal essential medium (MEM) cell culture media, fetal bovine serum (FBS), sodium pyruvate, L-glutamine, hygromycin B, Dulbecco’s phosphate-buffered saline (DPBS), Gentamycin, trypsin/EDTA, Hanks’ balanced salt solution (HBSS)]; Sigma, [DNase1, leupeptin, puromycin, L-glutamate, polyethyleneimine (PEI), dextrose]; Invitrogen/Life Technologies, [amphotericin B (Fungizone®), B27 supplement, Neurobasal medium, Glutamax®]; Fisher, [dimethyl sulfoxide (DMSO)]. STS-E412 (2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine) was synthesized in our laboratory as described in the Supplemental Methods.

Preparation of human fetal brain tissue. Primary human brain tissue was obtained from Advanced Bioscience Resources, Inc., Alameda, CA, as dissected 13- to 16-week-old human fetal brain tissue. The gender of the fetuses was unknown. Processing and maintenance of human cortical tissue was performed essentially according to Wogulis et al. (Wogulis et al., 2005) with modifications as described below. The initial tissue processing was performed in HBSS supplemented with 250 ng/ml amphotericin B. Brain tissue was cut into ~2-mm³ pieces with a sterile razor blade. The tissue fragments were washed twice in amphotericin B-supplemented HBSS followed each time by centrifugation. The tissue pieces were then dispersed by trituration in amphotericin B-supplemented HBSS containing DNase I (1 mg/ml). Individual cells were separated from the tissue debris by passing the suspension through a nylon mesh cell strainer (100 µm), collected by centrifugation, and digested in 0.05% trypsin/EDTA at 37°C for 20 minutes. The digestion was terminated by adding MEM supplemented with 10% FBS and DNase I (1 mg/ml), and the cells were again dispersed by gentle trituration. The isolated cells were collected by centrifugation and washed twice in culture medium containing MEM supplemented with L-glutamine (1 mM), dextrose (1% w/v), sodium pyruvate (1 mM), B27 and Gentamycin (10 µg/ml). Finally, the cells were plated in PEI-coated 24-well plates (750,000 cells per well). The medium was
refreshed twice weekly, and assays were performed between 7 and 21 days in culture. The cortical cell cultures were > 90% neurons, based on positive staining for neurofilament and microtubule-associated protein (Wogulis et al., 2005), and are referred to herein as human neuronal cells.

**Generation of EPOR- and EPOR/CD131-overexpressing cell lines.** The human embryonic kidney cell line HEK-293 (ATCC-1573) was propagated in DMEM supplemented with FBS (10%). HEK-293 cells over-expressing the EPOR alone were produced by transfection with a commercial mammalian expression vector containing the human EPOR gene and a puromycin selection marker (Gencopoeia, Rockville MD; EX-A0440-M68) using the FuGENE HD transfection reagent (Promega, Madison WI) followed by selection in 5 µg/ml puromycin. HEK-293 cells over-expressing CD131 alone were produced by transfection with a commercial mammalian expression vector containing the human CSF2RB gene and a hygromycin B selection marker (Gencopoeia EX-Z5874-M67) followed by selection in 150 µg/ml hygromycin B. HEK-293 cells over-expressing both the EPOR and CD131 were generated by transfecting the EPOR expression vector (EX-A0440-M68) into the HEK293/CD131 cell line followed by selection in puromycin and hygromycin B (5 µg/ml and 150 µg/ml, respectively).

**Preparation of hippocampal neuronal cultures.** Embryonic day 18 rat hippocampi (BrainBits, Springfield, IL) were dissociated with papain (Worthington Biochemical Corporation) and plated in 96-well plates at a density of 50,000 cells per well in Neurobasal/B27 medium as follows. Brain tissue was received packaged in a proprietary preservation “Hibernate”. The Hibernate medium overlaying the brain tissue was removed and replaced with 100 ug/ml papain in DPBS (1 ml/brain); the digestion mixture was then transferred to a 30°C water bath for 30 minutes. After incubation, the digestion solution was removed and replaced with 3 ml of DMEM supplemented with 10% FBS and 2 U/ml DNase I. Using a fire-polished 9-inch Pasteur pipette, the digested tissue was transferred to a 15-ml tube and triturated (5-10 cycles) to disperse the individual cells. The dispersed cells were separated from larger tissue pieces by allowing the latter to settle to the bottom of the centrifuge tube and transferring the supernatant to a new 15-ml centrifuge tube. The cells were collected by centrifugation (200g, 5 min). The cell pellet was dispersed with a fire-polished 9-inch Pasteur pipette into 2 ml of growth medium containing Neurobasal
medium, B27 supplement, and Glutamax® (5 mM). The cells were plated at a density of 50,000 cells per well in 96-well multiwell plates and maintained in a humidified incubator at 37°C with 5% CO₂.

**Primary human renal epithelial cells.** Normal human RPTEC (Lonza/Clonetics) were received at passage 2 and were seeded and grown according to the manufacturer’s protocol. The RPTEC were maintained in basal medium (REBM; Lonza/Clonetics) supplemented with recombinant human epidermal growth factor, recombinant human insulin, hydrocortisone, epinephrine, transferrin, triiodothyronine, gentamycin, amphotericin B, and 0.5% FBS (Lonza/Clonetics).

**Signaling assays.** For assays employing HEK293 and derived cell lines, the cells were plated in 6- or 24-well plates 48 hour prior to the assay. For assays employing human neuronal cells, assays were performed 7 to 21 days after plating. One hour prior to the assay, the media were removed and replaced with fresh media. For the signaling assays measuring phosphorylation of AKT (HEK293 and derived cells lines only), cells were detached using DPBS without Ca²⁺ or Mg²⁺, collected by centrifugation, suspended in DMEM supplemented with 0.1% FBS, plated in 6-well tissue-culture plates, and assayed between 30-45 minutes after plating. Compound stock solutions were prepared in DMSO at 1,000x final concentration, and final dilutions were prepared immediately before the assay in cell culture medium. Compound, rhEPO, and control cultures contained identical final concentrations of DMSO (0.1% by volume). Cell plates and assay solutions were equilibrated to room temperature prior to the assay. The reaction was initiated by the addition of test articles (5x final concentration) and mixing by gentle trituration. Following 11 minutes at room temperature, the media overlaying the cells were removed, and the cells were washed by the addition of 1 ml of DPBS. The DPBS overlaying the cells was then removed and replaced with ice-cold lysis buffer (see Supplemental Data for composition of ELISA reagents). The lysate was frozen in place, thawed and clarified by centrifugation prior to analysis.

**Determination of phospho-EPOR content in cell lysates.** A standard sandwich enzyme-linked immunosorbent assay (ELISA) was performed to assess the level of phospho-EPOR (pEPOR) according to the manufacturer’s protocol (R&D Systems). The results were normalized to protein contents.
determined using the bicinchoninic acid (BCA) method (Pierce). See Supplemental Data, Supplemental Figures 3-4 and Supplemental Table 1 for assay validation.

**Determination of phospho-CD131 content in cell lysates.** A standard sandwich ELISA was performed to assess the level of phospho-CD131 (pCD131). Briefly, total CD131 was captured with an immobilized anti-CD-131 antibody (BD Biosciences, # 554534) and detected with a horseradish peroxidase-conjugated secondary antibody directed against phosphotyrosine (R&D Systems). The pCD131 content was normalized to the protein content determined using the BCA method (Pierce). Positive control membrane lysates were generated using TF-1 cells that were starved of IL-3 overnight and treated with IL-3 (10 ng/ml) for 12 minutes. See Supplemental Data and Supplemental Figures 5-7 for assay validation.

**Determination of phospho-JAK2 and phospho-AKT content in cell lysates.** Commercial ELISA kits for the detection of pY^{1007-1008}-JAK2 (pJAK2) and pS^{473}-AKT (pAKT) were obtained from Life Technologies and Cell Signaling Technology, respectively. Both assays were performed according to the manufacturers’ instructions. The pJAK2 content was quantified according to a standard provided with the kit in which 1 Unit of pYpY-JAK2 is equivalent to 3.3 μg of HEL cell lysate treated with 100 μM sodium vanadate for 30 minutes. The results were normalized to protein contents determined using the BCA method (Pierce) and are expressed as units per 100 μg protein.

**Primary rat cortical neuronal cultures.** Cells were isolated from micro-surgically dissected embryonic day 18 rat cortices that were obtained from Neuromics (Edina, MN), and cultures were prepared according to the supplier’s protocol.

**TF-1 cell proliferation assay.** TF-1 cells (ATCC CRL-2003) were cultured in DMEM supplemented with FBS (10%) and rhIL-3 (1 ng/ml). The cells were starved of IL-3 for 24 hours prior to the assay and then plated at 5,000 cells per well in 96-well multiwell plates in the presence of test articles. Cell proliferation was measured 72 hours later using the CellTiter-Glo® reagent (Promega) according to the manufacturer’s instructions.
**CD34+ cell proliferation assay.** Frozen primary CD34+ cells from human bone marrow (Stem Cell Technologies) were seeded into 96-well multiwell plates at 3,000 cells/well in StemSpan® SFEM medium (Stem Cell Technologies) containing bovine serum albumin (1%), recombinant human insulin (10 µg/ml), human transferrin (iron saturated, 200 µg/ml), 2-mercaptoethanol (20 µM) and L-glutamine (2 mM) in Iscove’s MDM (Stem Cell Technologies). Cell proliferation was measured after 10 days in culture using the CellTiter-Glo® reagent (Promega) according to the manufacturer’s instructions.

**Protection of primary human neuronal cells from staurosporine challenge.** Primary human neuronal cells were treated with STS-E412 or rhEPO for 24 hours (37°C, 5% CO2) prior to initiating a staurosporine insult (500 nM, final) and incubating for an additional 24 hours. Test articles were present at the indicated concentrations for the duration of the experiment. Cytotoxicity was measured using a commercially available lactate dehydrogenase (LDH) assay kit (Clontech) according to the manufacturer’s instructions.

**Excitotoxicity assay of rat hippocampal cultures.** After 12 days in culture, the culture medium was changed to Neurobasal medium supplemented with 0.1% BSA but without B27 supplement, and the cultures were returned to the incubator (37°C, 5% CO2). Test articles were added in the same medium yielding a final concentration of 0.2% DMSO. The following day, glutamate was added to a final concentration of 100 µM, and the cell-culture plate was returned to the incubator for 24 hours. Test articles were present at the indicated concentrations for the duration of the experiment. Cytotoxicity was measured using a colorimetric LDH assay kit (Clontech) according to the manufacturer’s instructions. The total LDH activity was determined by measuring the LDH activity released by medium supplemented with 1% Triton X-100.

**Hydrogen peroxide challenge.** Twenty-four hours prior to the assay, RPTEC were harvested, seeded into 96-well multiwell plates and returned to the incubator (37°C, 5% CO2). Components contained in the RPTEC culture medium reduce hydrogen peroxide (H2O2); therefore, the peroxide challenge was performed in RPMI-1640 medium supplemented with 0.5% FBS. The RPTEC medium was replaced with RPMI/0.5% FBS by removing the media overlaying the cells and rinsing the tightly
adhering cells with RPMI/0.5% FBS. Fresh working stocks of H$_2$O$_2$ were prepared in HBSS. Fresh working stocks of control solutions and compounds were prepared in RPMI/0.5% FBS. The challenge was initiated by sequential additions of 10x control or compound working stocks followed by 10x H$_2$O$_2$ working stock (150 µM final) and mixing via gentle trituration. The culture plates were returned to the incubator for 24 hours. Cytotoxicity was quantified using CellTiter-Glo® and LDH release assays according to manufacturer’s instructions.

**Parallel artificial membrane permeability assays.** Parallel artificial membrane permeability assays (PAMPAs) were performed using the pre-coated PAMPA Plate System (BD Biosciences, GenTest™, Part # 353015) according to the manufacturer’s protocol. DMSO stock solutions of test articles and reference compounds (dopamine, amitriptyline, propranolol, carbamazepine, sulfasalazine) were diluted in DPBS to a final concentration of 50 µM and 0.1% DMSO (v/v) and added to the donor well in a volume of 300 µl. The acceptor wells contained 50 µM Lucifer yellow in DPBS in a volume of 200 µl. Leakage of Lucifer yellow into the donor well was interpreted as a failure in the PAMPA membrane integrity. The incubation times were 2, 4, and 6 hours at room temperature. At the conclusion of the incubation period, aliquots were removed and analyzed by reversed-phase high-performance liquid chromatography (HPLC) [Agilent 1100, detection at 215/254 nm, linear gradient from 0.1% trifluoroacetic acid in water (80%)/acetonitrile (20%) to 0.1% trifluoroacetic acid in water (20%)/acetonitrile (80%)]. Permeability ($P_e$), efflux ratio (ER) and mass balance were calculated according to the manufacturer’s methodology (SPC-353015-G rev 1.0). Permeability (cm/s): $P_e = \frac{-\ln[1-C_A(t)/C_{eq}]}{A*(1/V_D+1/V_A)*t}$, where $A =$ filter area (0.3 cm$^2$), $V_D =$ donor well volume (0.3 ml), $V_A =$ acceptor well volume (0.2 ml), $t =$ incubation time (s), $C_A(t) =$ compound concentration in acceptor well at time t, $C_D(t) =$ compound concentration in donor well at time t, and $C_{eq} = \frac{[C_D(t)*V_D+C_A(t)*V_A]}{(V_D+V_A)}$.

**Caco-2 permeability assay.** A bidirectional permeability assessment in Caco-2 cell monolayers was performed at BD Biosciences. Caco-2 cells (human adenocarcinoma colonic cell line Caco-2, ATCC Cat. No. HTB-37) were used at passage 44 and cultured for 24 days in DMEM supplemented with 10%
FBS, 5 mM HEPES, 0.4% glucose, non-essential amino acids, and 50 μg/ml gentamycin. The monolayer integrity was evaluated via pre-experimental trans-epithelial electrical resistance (TEER) measurements and post-experimental Lucifer yellow A-to-B flux determinations for each cell monolayer. Bidirectional transport (A to B and B to A) of compounds at 10 μM (with final 0.1% DMSO v/v) was determined in duplicates at 0 and 90 minutes via liquid chromatography-mass spectrometry (LC-MS/MS) detection in donor and acceptor wells. Apparent Permeability (Papp) was calculated according to the equation Papp (cm/s) = (Flux × Vd)/(t × A) = dQ/dt × 1/(A × Cd), where Flux is the fraction of the donated amount recovered in the receiver chamber, Vd is the volume in the donor chamber (cm³), Cd is the initial concentration in the donor solution (mM), A is the surface area of the insert filter membrane (cm²), t is the incubation time (s), and dQ/dt is the amount of drug transported within a given time period (pmol/s).

The ER was calculated as ER = Papp B to A / Papp A to B. The Mass balance was calculated as follows: Mass balance = 100 × ((Vr × Cr final) + (Vd × Cd final))/(Vd × C0), where C0 is the initial concentration in the donor compartment at t = 0 min (nmol/cm³), Vr is the volume of the receiver compartment (cm³), Vd is the volume of the donor compartment (cm³), Cr final is the receiver concentration at the end of the incubation (nmol/cm³), and Cd final is the donor concentration at the end of the incubation (nmol/cm³).

**Off-target profiling assays.** Enzyme activity and radioligand binding assays against 68 pharmacologically relevant molecular targets (enzymes, receptors, ion channels) were performed at Ricerca, Concord OH (Part # 1160393). Test articles were evaluated in duplicate at a concentration of 10 μM. All assays included a reference positive control. Significant responses were defined as ≥ 50% inhibition or stimulation for the biochemical assays or ≥ 50% inhibition of ligand binding in the radioligand binding assays. The tested molecular targets included Protein Serine/Threonine Kinase, GSK3B, Adenosine A1, Adenosine A2A, Adenosine A3, Adrenergic α1A, Adrenergic α1B, Adrenergic α1D, Adrenergic α2A, Adrenergic β1, Adrenergic β2, Androgen (Testosterone) AR, Bradykinin B1, Bradykinin B2, Calcium Channel L-Type (Benzothiazepine), Calcium Channel L-Type (Dihydropyridine), Calcium Channel N-Type, Cannabinoid CB1, Dopamine D1, Dopamine D2S, Dopamine D3, Dopamine D4,2, Endothelin ET A, Endothelin ET B, Epidermal Growth Factor (EGF), Estrogen ERα, GABA A
(Flunitrazepam, Central), GABA_A (Muscimol, Central), GABA_B1A, Glucocorticoid, Glutamate (Kainate), Glutamate (NMDA, Agonism), Glutamate (NMDA, Glycine), Glutamate (NMDA, Phencyclidine), Histamine H_1, Histamine H_2, Histamine H_3, Imidazoline I_2, IL-1, Leukotriene (Cysteinyl CysLT_1), Melatonin MT_1, Muscarinic M_1, Muscarinic M_2, Muscarinic M_3, Neuropeptide Y Y_1, Neuropeptide Y Y_2, Nicotinic Acetylcholine, Nicotinic Acetylcholine α1 (Bungarotoxin), Opiate δ1 (OP1, DOP), Opiate κ (OP2, KOP), Opiate µ (OP3, MOP), Phorbol Ester, Platelet Activating Factor, Potassium Channel [K_ATP], Potassium Channel hERG, Prostanoid EP_4, Purinergic P_2X, Purinergic P_2Y, Rolipram, Serotonin (5-Hydroxytryptamine) 5-HT_1A, Serotonin (5-Hydroxytryptamine) 5-HT_2B, Serotonin (5-Hydroxytryptamine) 5-HT_3, Sigma σ_1, Tachykinin NK_1, Thyroid Hormone, Transporter, Dopamine (DAT), Transporter (GABA), Transporter (Norepinephrine NET), Transporter (Serotonin, 5-Hydroxytryptamine).
Results

Cytoprotective EPO receptor agonist compounds were identified from a small-molecule library of putative EPO receptor agonist tool compounds (Punnonen et al., Abstract #335AAN11D1; 63rd Annual Meeting of the American Academy of Neurology, 2011). The design of the initial library was facilitated by the structure-activity relationship (SAR) information available from small molecule (Qureshi et al., 1999, Goldberg et al., 2002) and allosteric peptide (Naranda et al., 1999, Naranda et al., 2002) agonists of the EPO receptor, and allosteric small molecule agonists of the structurally related TPOR (Erickson-Miller et al., 2005, Desjardins et al., 2006, Dziewanowska et al., 2007, Kim et al., 2007, Kalota and Gewirtz, 2010, Abe et al., 2011), as well as structural data on the receptors (Livnah et al., 1996, Livnah et al., 1999, Carr et al., 2001). An initial hit was identified based on receptor interaction and EPO-like functional activity, and subsequent compound designs for developing an SAR for in vitro neuroprotection focused on 1,2,4-triazolo[1,5-a]pyrimidines. The neuroprotection SAR optimization included calculated BBB permeability [logP – (N+O) values and multi-parameter optimization] (Hitchcock, 2008, Wager et al., 2010), cytoprotective activity utilizing serum-deprived PC12 cells (Kunioku et al., 2001), aqueous solubility, in vitro metabolic stability, permeability in PAMPAs and Caco-2 assays, cytoprotection assays in primary neuronal and hematopoietic cells, and receptor activation in transfected cell lines. Compounds with EPO-like protective effects were identified, and STS-E412 (2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine) was selected for more detailed characterization based on significant receptor activation, neuroprotection, and a lack of erythropoietic activity as shown below. The structure of STS-E412 is shown as an insert in Figure 1B, and its synthesis is described under Supplemental Data. STS-E412 has drug-like physical properties (MW = 318.8, cLogP = 3.3, topological polar surface area = 62 Å²) and a water solubility of 0.0032 mg/ml (pH 7, PBS), which was determined by HPLC-UV analysis of the dissolved compound in a saturated solution after 90 minutes of shaking.

To evaluate EPOR activation in primary non-erythroid cells, we established cultures of primary human neuronal cells derived from human fetal cortical brain tissue. rhEPO produced a dose-dependent increase in the amount of phosphorylated EPOR in these primary human neuronal cell cultures (Figure
1A). Basal levels of the pEPOR averaged 0.33 ± 0.1 pg/µg protein (mean ± S.D., range: 0.23-0.91 pg/µg). The apparent EC50 for rhEPO regarding EPOR phosphorylation was near 1 IU/ml (Figure 1A), and increasing the rhEPO concentration to greater than ~10 IU/ml did not provide an additional increase in EPOR phosphorylation. In the same primary cultures, STS-E412 also increased phosphorylation of the EPOR (Figure 1B). The maximal effect of STS-E412 was at least comparable to or higher than that induced by rhEPO (Figure 1B). The STS-E412-induced increase in EPOR phosphorylation was dose-dependent and significant at concentrations as low as 60 nM. STS-E412 increased pEPOR levels approximately 4-fold over background in three independent cultures of primary human neuronal cells. The increase in pEPOR in HCC produced by 10 IU/ml rhEPO (n=6) was not statistically different from that produced by 5 μM STS-E412 (n=8) based on student t-test (p=0.479).

To further examine signaling events induced by STS-E412, we generated HEK293 cell lines over-expressing the EPOR and CD131 (Figure 2, A-D) or the EPOR alone (Figure 2E). In HEK293 cells over-expressing the EPOR and CD131, both rhEPO and STS-E412 produced increases in EPOR and CD131 phosphorylation (Figure 2A and 2B, respectively). The basal level of pEPOR in untransfected HEK-293 cells was 0.33 ± 0.3 pg/µg protein (mean ± S.D., range: 0.01-0.86, n = 5), while cells over-expressing the EPOR and CD131 had a basal pEPOR level of 0.66 ± 0.25 pg/µg protein (mean ± S.D., range: 0.25-0.86 pg/µg protein, n = 4). In these transfected cells, STS-E412 produced a dose-dependent increase in pEPOR that reached a maximum near 100 nM with a bell-shaped dose-response curve (Figure 2A). The magnitude of the maximal increase in pEPOR induced by STS-E412 was approximately 50% of that induced by rhEPO (Figure 2A). Increases in pEPOR produced by 10 IU/ml rhEPO were greater than those produced by STS-E412 (tested at concentrations from 1-30 nM; p<0.014) while increases in pEPOR produced by 10 IU/ml rhEPO vs. 100 nM STS-E412 were not significantly different (p=0.083). Both STS-E412 and rhEPO also increased the phosphorylation of CD131 in these cells (Figure 2B). In this case, no significant difference in the maximal response was observed between STS-E412 and rhEPO (Figure 2B). Increases in pCD131 produced by 10 IU/ml rhEPO vs. those produced by 50 nM STS-E412 were not significantly different (p=0.21).
Both rhEPO and STS-E412 triggered phosphorylation of JAK2 (Figure 2C) and AKT (Figure 2D) in HEK293 cells over-expressing the EPOR and CD131. In four independent experiments, STS-E412 increased pJAK2 by 1.52 ± 0.23 fold over basal levels with apparent EC$_{50}$ values of approximately 1-10 nM (Figure 2C and data not shown). By comparison, 10 IU/ml rhEPO increased pJAK2 by 2.2 ± 0.2 fold over basal levels (Figure 2C). Increases in pJAK2 produced by 10 IU/ml rhEPO vs. that produced by 1-3.7 nM STS-E412 were statistically different by student t-test (p<0.035) while increases in pJAK2 produced by 10 IU/ml rhEPO vs. 11-100 nM STS-E412 were not significantly different (rhEPO vs. 11 nM STS-E412, p=0.072; rhEPO vs. 33 nM STS-E412, p=0.151; rhEPO vs. 100 nM STS-E412, p=0.109).

HEK293 cells and HEK293-derived cell lines contained relatively high basal levels of pAKT, and increases in pAKT above basal levels, with either rhEPO or STS-E412 treatment, were very small (data not shown). To circumvent this limitation, we found that transferring cells to media containing 0.1% FBS produced a transient decrease in the level of pAKT (to approximately 30-50% of basal levels) that was persistent for approximately 1 hour (data not shown). Under these conditions, STS-E412 also significantly increased the level of pAKT in HEK293 cells over-expressing the EPOR and CD131 (Figure 2D). In four independent experiments, STS-E412 increased pAKT levels by 1.82 ± 0.4 fold over basal levels with apparent EC$_{50}$ values of 1-10 nM (Figure 2D and data not shown). In six independent experiments, 10 IU/ml rhEPO increased pAKT by 2.45 ± 0.91 fold over basal levels (Figure 2D and data not shown). Increases in pAKT produced by 10 IU/ml rhEPO vs. those produced by STS-E412 were significant at all tested concentrations (p≤5.6x10$^{-8}$).

Using HEK293 cells over-expressing the EPOR alone, rhEPO strongly increased the phosphorylation of the EPOR (Figure 2E), JAK2 and AKT (data not shown) as expected. The average fold-increases in the levels of pEPOR and pJAK2 produced by rhEPO were 2.7 ± 0.7 fold (mean ± S.D., range: 1.9-3.6, n = 5) and 7.9 ± 4.3 (mean ± S.E.M., range: 2.7-20.8, n = 4), respectively. The fold-increases in pAKT levels (1.45-fold over the basal level), in the presence of 0.1% FBS, in response to rhEPO were smaller than the increases in pEPOR and pJAK2. In untransfected HEK293 cells, rhEPO produced a small, statistically insignificant increase in pEPOR (p = 0.062, triplicate measurements;
Figure 2E), while pEPOR levels in the presence of STS-E412 were indistinguishable from those in the controls. In EPOR-over-expressing HEK293 cells, rhEPO produced an increase in pEPOR in a dose-dependent manner. In contrast, STS-E412 at concentrations ranging from 1 nM to 60 µM did not increase pEPOR levels in the HEK293 cells over-expressing the EPOR alone (Figure 2E and data not shown). Increases in pEPOR produced by 10 IU/ml rhEPO vs. those produced by STS-E412 (tested at concentrations from 2 µM – 60 µM) were significant at all tested concentrations (p<0.0001). Consistent with our finding in HEK293 cells, STS-E412 did not produce increases in pEPOR in the erythroid cell line TF-1 over a similar concentration range, whereas 10 IU/ml rhEPO resulted in increases in pEPOR of approximately 2 fold (1.94 ± 0.16 fold, mean ± S.D., range: 1.83-2.12, n = 3; data not shown).

Proliferation assays with the erythroleukemia cell line TF-1 (Figure 3A, 3B) and primary human bone marrow-derived CD34+ cells (Figure 3C, 3D) support the view that STS-E412 does not stimulate the erythropoietic EPOR/EPOR homodimer. RhEPO induced dose-dependent increases in both TF-1 and CD34+ cell numbers (Figure 3A and Figure 3C, respectively). In contrast, STS-E412 at concentrations up to 1,000 nM had no effect on TF-1 or CD34+ cell proliferation (Figure 3B and Figure 3D, respectively). At concentrations above 1,000 nM, STS-E412 decreased the proliferation of TF-1 cells (Figure 3B), while the proliferation of CD34+ cells was increased (Figure 3D). Student t-tests comparing TF-1 proliferation in the presence of 10 IU/ml rhEPO vs. STS-E412 (Figure 3-B) indicated these differences were significant (p<8.03x10^-5). In contrast, student t-tests comparing CD34+ cell proliferation in the presence of 10 IU/ml rhEPO vs. 30 µM STS-E412 were not significant (p=0.11) while differences between 10 IU/ml rhEPO and STS-E412 at 3 µM and lower concentrations were significant (p<0.024).

STS-E412 protected primary human neuronal cells from a staurosporine challenge (Figure 4A), protected primary rat hippocampal neurons from an excitotoxic glutamate challenge (Figure 4B) and protected primary human RPTEC from a H2O2 challenge (Figure 5A, 5B). All the protection assays followed a paradigm consisting of a 24-hour treatment with the test articles followed by a 24-hour challenge, and rhEPO was included in the experiments for comparison.
In human neuronal cells (Figure 4A), the basal extracellular LDH was 19.3 ± 1.7% of the total LDH (mean ± S.D.). Staurosporine treatment alone (500 nM) increased the extracellular LDH to 36.8 ± 7.2% of the total LDH (mean ± S.D., 1.9-fold increase). Pre-treatment with rhEPO attenuated the staurosporine-dependent increase in the extracellular LDH by approximately 40% (to 29.9 ± 2.9% of the total LDH). STS-E412 also protected the human neuronal cells from a staurosporine insult in a dose-dependent manner with an apparent EC₅₀ value in the 1-10 nM range (Figure 4A). STS-E412 attenuated the increase in extracellular LDH by approximately 50% at concentrations above 10 nM (e.g., to 27.3 ± 1.6% of the total LDH in the presence of 1,000 nM STS-E412). Based on student t-tests, difference in protection from staurosporine insult of human neuronal cells produced by 10 IU/ml rhEPO vs. those produced by STS-E412 at concentrations ≥ 1 nM were not significant (rhEPO vs. STS-E412 at 1 nM, p=0.097; rhEPO vs. STS-E412 10 nM, p=0.697; rhEPO vs. STS-E412 at 100 nM, p=0.361; rhEPO vs. STS-E412 at 1000 nM, p=0.547).

In primary rat hippocampal neuronal cultures, pre-treatment with rhEPO attenuated the glutamate-dependent increase in extracellular LDH by approximately 70%. Similarly, STS-E412 protected primary rat hippocampal neurons from glutamate challenge with a maximal protection at concentrations above 10 nM (Figure 4B). Concentrations of STS-E412 above 10 nM attenuated the increase in extracellular LDH by up to 46 ± 16%. Based on student t-tests, 10 IU/ml rhEPO produced significantly greater protection from glutamate insult in rat hippocampal neurons than STS-E412 (rhEPO vs. STS-E412 at 1 nM, p=0.0071; rhEPO vs. STS-E412 10 nM, p=0.0128; rhEPO vs. STS-E412 at 100 nM, p=0.0133).

In primary cultures of human RPTEC, pre-treatment with rhEPO attenuated the H₂O₂-dependent decrease in intracellular ATP in a dose-dependent manner with complete or near-complete protection in the 1-10 IU/ml concentration range (102 ± 0.75% of control at 10 IU/ml rhEPO; Figure 5A). This protection was also reflected in a decrease in the level of extracellular LDH at similar rhEPO concentrations; rhEPO attenuated the increase in extracellular LDH by greater than 79% (97.5 ± 25% for 2 IU/ml rhEPO and 79.4 ± 0.1% for 10 IU/ml rhEPO). Pre-treatment with STS-E412 also attenuated the
H$_2$O$_2$-dependent decrease in intracellular ATP in a dose-dependent manner with nearly complete protection at low nanomolar concentrations and complete protection at concentrations near 1 nM (103.3 ± 3.8% at 1 nM STS-E412; Figure 5A). This protection was also reflected in a decrease in extracellular LDH at similar STS-E412 concentrations, and complete protection was observed at 0.1 nM STS-E412 (102 ± 13% compared with the unchallenged control; Figure 5B). Based on student t-test, 10 IU/ml rhEPO did not produce significantly more protection from H$_2$O$_2$ challenge than the optimal concentration of STS-E412 (LDH read-out: rhEPO vs. 0.1 nM STS-E412, p=0.303; Cell Titer Glo read-out: rhEPO vs. 1 nM STS-E412, p=0.933). Protection from H$_2$O$_2$ challenge was reduced at the highest concentrations of rhEPO and STS-E412 (Figure 5A, 5B).

A preliminary assessment of the suitability of STS-E412 for in vivo studies was performed using permeability and off-target activity assays. STS-E412 demonstrated high in vitro permeability in a PAMPA with a P$_e$ value of 15 × 10$^{-6}$ cm/s. The bidirectional transport of STS-E412 at 10 µM across a Caco-2 cell monolayer was determined via LC-MS/MS detection. STS-E412 demonstrated high transcellular permeability in both directions, with Papp values > 17 × 10$^{-6}$ cm/s. The calculated ER was < 1.0, suggesting that the compound is not a substrate for P-glycoprotein, a BBB efflux transporter. Importantly, permeability of STS-E412 across the BBB was observed in vivo. Thirty minutes after 10 mg/kg IP dose of STS-E412 in Sprague-Dawley rats (n=3), plasma and brain concentrations of the compound were 4073 ± 121 ng/ml and 1589 ± 25 ng/ml, respectively (compound calculations for brain homogenate are based on a density of 1 ml per gram tissue; see supplemental data for experimental details). The calculated brain/plasma concentration ratio was 0.39. Next, potential off-target effects were evaluated in an enzyme- and radio-ligand-binding panel of 68 molecular targets. The assay package was designed for prioritizing drug candidates utilizing a broad selection of targets to detect the drug’s potential for adverse events and included several CNS targets to evaluate the potential for drug dependence (the complete list of targets is presented in the Materials and Methods). Significant responses were defined as > 50% inhibition or stimulation at 10 µM. All the assay values for STS-E412 were <
50%, suggesting no significant off-target effects among those evaluated in the panel (Supplemental Data, Table 1).
Discussion

EPO has emerged as a pleiotropic cytokine that is important not only in the regulation of erythroid cell differentiation and survival but also as a potent cytoprotective agent in multiple organs. The characterization of the tissue-protective effects of EPO has led to the identification of two distinct receptors for EPO: an EPOR/EPOR homodimer that mediates erythropoiesis and an EPOR/CD131 heteromeric receptor that mediates tissue-protective effects. Here we describe the discovery and characterization of the nonpeptidyl compound STS-E412, which selectively activates the tissue-protective EPOR/CD131 receptor.

The first reports of nonpeptidyl small molecule EPO receptor agonists described compounds activating the EPOR/EPOR homodimer. These compounds demonstrated EPO-like activities on hematopoietic precursor cells in vitro, while the potencies were relatively low (EC50 > 1 µM), and the compounds had molecular weights > 1,000 Da (Qureshi et al., 1999, Goldberg et al., 2002). A dimeric 20-amino-acid peptide lacking sequence homology with EPO also activated the EPOR/EPOR homodimer in preclinical and clinical studies (Wrighton et al., 1996, Johnson et al., 1998, Besarab et al., 2012). The crystal structure of the dimeric EPO mimetic peptide bound to the EPOR confirmed that the binding is orthosteric (Livnah et al., 1996). While none of these mimetics are likely to be orally bioavailable, these studies demonstrated the feasibility of developing small molecules that compete with EPO to bind the EPOR/EPOR homodimer.

Given the similarities in the mechanisms of activation and structures of the receptors for TPO and EPO (Vigon et al., 1992, Boulay et al., 2003), the success in discovering and developing small molecule TPOR agonists further suggested the feasibility of discovering small molecule mimetics of EPO. All the small molecule TPOR agonists reported to date activate the receptor by binding to allosteric sites outside of the native ligand-binding site and proximal to residues near the plasma membrane (Desjardins et al., 2006, Dziewanowska et al., 2007, Kim et al., 2007, Erickson-Miller et al., 2009, Kalota and Gewirtz, 2010, Abe et al., 2011), suggesting that allosteric compounds may have more promise as therapeutic agents targeting the EPO receptor when compared to compounds binding at the orthosteric sites. The
allosteric TPOR agonists described to date are also smaller than the previously described orthosteric EPOR agonists, supporting the potential to design compounds that cross the BBB. Allosteric small peptide agonists of the EPO receptor have been described, while no tissue-protective effects were reported (Naranda et al., 1999, Naranda et al., 2002). Small molecule compounds selective for the tissue-protective EPOR/CD131 heterodimer have the potential to overcome the limitations of EPO regarding tissue availability and may improve safety by avoiding the hematopoietic side effects.

A fundamental mechanism of the EPO-induced protective effect is the inhibition of apoptosis via the JAK2/AKT pathway and subsequent transcriptional regulation of anti-apoptotic proteins, including Bcl-xL and Bax (Digicaylioglu and Lipton, 2001, Wen et al., 2002, Um and Lodish, 2006, Wu et al., 2007a). EPO also protects cells against oxidative damage in vitro and in vivo (Solaroglu et al., 2003, Wu et al., 2007b). STS-E412 activates the tissue protective EPOR/CD131 receptor at nanomolar concentrations in primary human neuronal cells and cell lines stably expressing the EPOR and CD131. The magnitude of CD131 phosphorylation in response to STS-E412 was comparable to that induced by rhEPO in EPOR/CD131 transfectants. STS-E412 also increased phosphorylation of EPOR in these transfectants, but the magnitude of the effect was substantially lower than that induced by rhEPO. STS-E412 triggered JAK2 and AKT phosphorylation in the EPOR/CD131 transfectants with a maximal increase approximately 50% of that induced by rhEPO. No significant activation of the EPOR/EPOR homodimer by STS-E412 was observed, illustrating selective activation of the EPOR/CD131 receptor by STS-E412. In contrast to transfected cell lines, the maximal effects of STS-E412 in primary neuronal cells were comparable to rhEPO regarding both EPOR phosphorylation and cytoprotection. The lack of EPOR phosphorylation in transfectants expressing the EPOR alone and the absence of EPO-like proliferative effects in TF-1 and primary human CD34+ hematopoietic progenitor cells further support the view that STS-E412 does not effectively activate EPOR/EPOR homodimeric receptors. The difference in the relative effects of rhEPO and STS-E412 on the EPOR/CD131 transfectants and primary cells is likely due to the presence of both EPOR/EPOR and EPOR/CD131 receptors in the heterologous expression system, while primary human neuronal cells express primarily the EPOR/CD131 receptor (Brines et al.,
2004). Previous studies demonstrating comparable cytoprotective effects of CEPO and EPO in non-hematopoietic tissues, including the CNS and kidneys (Leist et al., 2004, Imamura et al., 2007, Wang et al., 2007), also support the conclusion that the primary receptor for EPO on neurons and RPTEC is EPOR/CD131.

Proliferation assays in TF-1 and CD34⁺ progenitor cells provide a more complex view of interactions between STS-E412 and cell surface receptors. TF-1 cells express IL-3, IL-5 and GM-CSF receptors (heteromeric receptors composed of distinct alpha subunits and CD131), and these cytokines stimulate TF-1 cell proliferation. TF-1 cells also express thrombopoietin receptor (TPOR) and thrombopoietin stimulates TF-1 cell proliferation (Drexler and Quentmeier, 1996). That STS-E412 does not stimulate proliferation in TF-1 cells suggests that STS-E412 does not effectively interact with these receptors at concentrations below 3-10 µM. The observed decrease in TF-1 proliferation at higher concentrations may suggest STS-E412-mediated sequestration of the CD131 subunit, which is required for growth of the IL-3- or GM-CSF-dependent TF-1 cells. In contrast to TF-1 cells, the increase in CD34⁺ progenitor cell proliferation at STS-E412 concentrations above 3-10 µM may suggest a low affinity interaction with the EPOR/EPOR homodimer or TPOR, although this was not detectable in the receptor phosphorylation assays. The increase in CD34⁺ cell proliferation also suggests that the decrease in TF-1 proliferation at high concentrations is not due to a non-specific cytotoxic effect of STS-E412. Regardless of the mechanism underlying these contrasting results with different cell types, these effects occurred at STS-E412 concentrations several orders-of-magnitude above those producing cytoprotective effects and EPOR/CD131 receptor activation.

STS-E412 exhibited a bell-shaped dose-response curve in the EPOR/CD131 transfectants and RPTEC cells, but not in primary neuronal cells. These observations are not surprising in light of previous studies on the small molecule TPOR agonist eltrombopag, which resulted in bell-shaped dose-response curves in receptor-expressing cell lines (Xie et al., 2012). In addition, eltrombopag triggered TPO-like STAT5 activation in CD34⁺CD41⁺ progenitor cells, but in contrast to rhTPO, eltrombopag did not activate STAT3 or AKT in CD34⁺CD41⁺ cells (Sun et al., 2012). Bell-shaped dose-response curves were also
observed in previous in vitro studies on nonpeptidyl compounds activating the receptors for G-CSF and EPO (Tian et al., 1998, Qureshi et al., 1999). The formation of 1:1 receptor/ligand complex at high ligand concentrations was also shown to inhibit the activation of receptors for growth hormone and EPO (Fuh et al., 1992, Schneider et al., 1997). The crystal structure of the GM-CSF receptor in complex with CD131 revealed a 2:2:2 hexamer consisting of two GM-CSFR alpha chains, two CD131 chains, and two GM-CSF molecules, and also demonstrated the existence of a functional higher-order dodecamer, a hexamer dimer (Hansen et al., 2008). The higher-order structures of the EPOR/CD131 complex are not known, while the GM-CSFRα/CD131 data suggest that similar higher-order structures form when CD131 associates with the EPOR. The bell-shaped dose-response curve triggered by STS-E412 suggests that, similar to the EPOR/EPOR, growth hormone, G-CSF and GM-CSF receptors, the formation of 1:1 receptor/ligand complex at high STS-E412 concentrations prevents the optimal activation of the EPOR/CD131 receptor. However, the exact mechanism of receptor activation by STS-E412 remains to be elucidated.

In the primary neuronal and kidney cell cytoprotection assays, STS-E412 exhibited significant cytoprotective effects following a range of cytotoxic challenges. These data are consistent with previous reports demonstrating broad cytoprotective effects of rhEPO, EPO variants selective for EPOR/CD131, and mimetic peptides (Konishi et al., 1993, Sakanaka et al., 1998, Erbayraktar et al., 2003, Brines et al., 2004, Leist et al., 2004, Coleman et al., 2006, Brines et al., 2008, Ahmet et al., 2011, Chen et al., 2012). The maximal protective effects in response to STS-E412 were comparable to those induced by rhEPO, and optimal responses were observed at low nanomolar concentrations in both neurons and RPTEC. It is worth noting that staurosporine inhibits many intracellular kinases and may inhibit activation of the tissue-protective EPOR/CD131 receptor and signaling molecules involved in protection. While our experimental paradigm used a 24 hours pre-treatment (in the absence of staurosporine) and staurosporine concentrations used in our experiments were relatively low, we cannot exclude the possibility that kinase inhibition affected the observed cytoprotective effects of rhEPO and STS-E412. This concern, however, does not associate with cytoprotective effects observed following glutamate and H2O2 challenge.
In summary, we report the discovery of STS-E412, which selectively activates the tissue-protective EPOR/CD131 heteromeric receptor. The small size, permeability across PAMPA and Caco-2 cellular monolayers, and observed CNS availability in vivo suggest improved tissue permeability compared to previously described nonpeptidyl EPO receptor agonists. Combined with the EPO-like protective effects in primary neurons and RPTEC, these compound characteristics support further evaluation of STS-E412 in neurodegenerative diseases and organ protection.
Author Contributions

Participated in research design: J.L. Miller, T.J. Church, D. Leonoudakis, K. Lariosa-Willingham, N.L. Frigon, C.S. Tettenborn, J.R. Spencer, J. Punnonen

Conducted experiments: J.L. Miller, T.J. Church, D. Leonoudakis, K. Lariosa-Willingham, N.L. Frigon, C.S. Tettenborn, J.R. Spencer, J. Punnonen

Contributed new reagents or analytic tools: J.L. Miller, T.J. Church, C.S. Tettenborn, J.R. Spencer, J. Punnonen

Wrote or contributed to the writing of the manuscript: J.L. Miller, T.J. Church, D. Leonoudakis, K. Lariosa-Willingham, N.L. Frigon, C.S. Tettenborn, J.R. Spencer, J. Punnonen
References


MOL Manuscript #98400


Footnotes

This work was supported by grants from the Friedreich’s Ataxia Research Alliance, the Michael J. Fox Foundation for Parkinson’s Research, the National Institute of Diabetes and Digestive and Kidney Diseases [1R43DK100140-01], and the Department of Defense ([W81XWH-11-2-0009, DM090012]; The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Government.
Figure legends

Figure 1. RhEPO and STS-E412 increase EPOR phosphorylation in primary cultures of human cortical cells. A: increase in EPOR phosphorylation in response to increasing concentrations of rhEPO. B: increase in EPOR phosphorylation in response to increasing concentration of STS-E412. Unfilled bars represent basal phosphorylation in the absence of rhEPO or STS-E412. Solid bars (A) represent pEPOR levels measured 12 minutes after the addition of rhEPO at the indicated concentrations (IU/ml), and grey bars (B) represent phosphorylation measured 12 minutes after the addition of the indicated concentrations of STS-E412 (nM). pEPOR levels were determined by an ELISA as described in Materials and Methods. The results from three independent experiments (means ± S.E.M.) using three different human cortical culture preparations are presented normalized to the respective control values. Each experiment was performed using 1-3 biological replicates. Basal pEPOR levels were 0.33 ± 0.13 pg/μg (mean ± S.D., range: 0.23-0.47 pg/μg protein). An asterisk (*) indicates a $p < 0.05$ compared to the control (basal phosphorylation) according to an unpaired Student’s t-test.

Figure 2. STS-E412 activates the EPOR/CD131 receptor but not the EPOR/EPOR homodimer. Phosphorylation of the EPOR, CD131 and the signaling molecules JAK2 and AKT were studied in HEK293 cells co-expressing the EPOR and CD131 (A-D) or in HEK293 cells expressing only the EPOR (E). In all the figures, the unfilled bars represent basal phosphorylation in the absence of rhEPO or STS-E412, solid bars represent phosphorylation levels measured 12 minutes after the addition of rhEPO (10 IU/ml), and grey bars represent phosphorylation measured 12 minutes after the addition of the indicated concentrations of STS-E412 (in nM). Phosphoprotein levels were determined by an ELISA as described in Materials and Methods. A: increase in pEPOR induced by rhEPO and STS-E412. The data represent increases in pEPOR (means ± S.E.M.) from five independent experiments; each experiment included 3-6 replicate measurements. Basal pEPOR levels were 0.66 ± 0.25 pg/μg (mean ± S.D.). B: increase in
pCD131 induced by rhEPO and STS-E412. The data are representative of three independent experiments (means + S.E.M.; each experiment included 2-3 biological replicates). C: increase in $\text{pY}^{1007}\text{pY}^{1008}$-JAK2 induced by rhEPO and STS-E412. The data are representative of two independent experiments, each performed in 2 or 8 biological replicates. D: increase in $\text{pS}^{473}$-AKT induced by rhEPO and STS-E412. The data are representative of three independent experiments each performed in 2-8 biological replicates (means + S.E.M.). E: STS-E412, in contrast to rhEPO, does not increase EPOR phosphorylation in HEK293 cells or HEK293 cells overexpressing EPOR alone. The data represent averaged increases in pEPOR from triplicate measurements under control conditions (unfilled bars), in the presence of rhEPO (solid bars), or in the presence of STS-E412 (grey bars). The cells were exposed to rhEPO or STS-E412 at the indicated concentrations for 12 minutes, and the reaction was quenched by the addition of a lysis buffer. Similar results were obtained in five independent experiments and at concentrations of STS-E412 ranging from 1 to 60,000 nM. An asterisk (*) represents a $p$-value $< 0.05$ compared to the control (Ctrl) according to Student’s t-test.

**Figure 3.** Effects of rhEPO and STS-E412 on proliferation of TF-1 and primary human CD34⁺ cells are shown. TF-1 cells (A, B) were starved of IL-3 for 24 hours prior to the experiment. rhEPO (A) or STS-E412 (B) were added to the cells at the indicated concentrations and cells returned to a humidified 37°C CO₂ incubator for 72 hours. Proliferation was measured by increases in ATP using a luminescence detection assay (CellTiter-Glo®, Promega). The data represent the results of six (STS-E412) or eight (control, rhEPO) replicate cultures (means ± S.E.M.). The results are representative of three independent experiments. Effects of rhEPO and STS-E412 on the proliferation of primary human CD34⁺ cells are shown in panels C and D, respectively. rhEPO or STS-E412 was added to yield the indicated concentrations, and the cells returned to a humidified 37°C incubator with 5% CO₂ for 10 days. Proliferation was measured by increases in ATP using a luminescence detection assay (CellTiter-Glo®, Promega). The data represent the means + S.E.M. of two independent experiments, each performed in triplicate and normalized to the respective control values. Controls are represented by unfilled bars;
rhEPO is represented by solid bars, and STS-E412 is represented by grey bars. RLU, relative luminescence units; an asterisk (*) represents a $p$-value < 0.05 compared to the control according to Student’s t-test.

**Figure 4.** STS-E412 protects primary human and rat neuronal cells from cytotoxic insults. A: primary human cortical cells were pre-treated with STS-E412 at the indicated concentrations or rhEPO (10 IU/ml) for 24 hours prior to a staurosporine insult (500 nM). After culturing the cells for an additional 24 hours, the supernatants were harvested, and the LDH levels were measured as described in the Methods section. The data represent the means + S.E.M. of six (rhEPO, STS-E412) or nine (control, staurosporine alone) replicates. B: primary rat hippocampal cells were pre-treated with STS-E412 at the indicated concentrations or rhEPO (10 IU/ml) for 24 hours prior to a glutamate insult (100 μM). The cells were then cultured for an additional 24 hours. The supernatants were harvested, and the LDH levels were measured as above. An asterisk (*) represents a $p$-value < 0.05 compared to the control according to Student’s t-test.

**Figure 5.** STS-E412 protects primary human RPTEC from $H_2O_2$-mediated cytotoxicity. RPTEC were pretreated with STS-E412 or rhEPO at the indicated concentrations for 24 hours prior to $H_2O_2$ insult (150 μM). The cells were then treated with $H_2O_2$ and returned to a 37°C 5% CO$_2$ incubator for another 24 hours. CellTiter Glo and LDH assays were then performed. Unfilled bars indicate control values (insult only); solid bars represent measured values in the presence of rhEPO (10 IU/ml), and grey bars indicate measured values in the presence of STS-E412 at the indicated concentrations. LDH and ATP levels were measured as described in Materials and Methods. The data represent the means + S.E.M. of six (control, $H_2O_2$ alone) or three (rhEPO, STS-E412) replicates. An asterisk (*) represents a $p$-value < 0.05 compared to the control according to Student’s t-test.
Figure 1

A

pEPOR (normalized to control)

ctrl  0.12  0.37  1.11  3.33  10
rhEPO (IU/ml)

B

pEPOR (normalized to control)

ctrl  62  185  556  1667  5000
STS-E412 (nM)

*
Figure 2

A) 

B) 

C) 

D) 

E)
Figure 3

A

rhEPO (EPOX, IU/ml)

0 0.0046 0.013 0.041 0.123 0.37 1.1 3.33 10 30

RLU (x 10^-3)

0 50 100 150 200 250 300

B

STS-E412 (µM)

0 0.013 0.041 0.123 0.37 1.1 3.33 10 rhEPO

RLU (x 10^-3)

0 50 100 150 200 250 300

C

rhEPO (IU/ml)

0 0.04 0.123 0.37 1.1 3.3 10 30

RLU (normalized to control)

0 1.0 2.0 3.0 4.0 5.0

D

STS-E412 (µM)

0 0.003 0.03 0.3 3 30

RLU (normalized to control)

0 1.0 2.0 3.0 4.0 5.0
Figure 4

A. LDH Release (Normalized to Control) with varying concentrations of STS-E412 (nM) in the presence of Staurosporine (500 nM).

B. LDH Release (Normalized to Control) with varying concentrations of STS-E412 (nM) in the presence of Glutamate (100 μM).
Figure 5

A

B

ATP (% of Ctrl)

LDH (% of Total)

H₂O₂ (150 μM)

rhEPO (IU/ml)  STS-E412 (nM)

H₂O₂ (150 μM)

rhEPO (IU/ml)  STS-E412 (nM)
Discovery and characterization of nonpeptidyl agonists of the tissue-protective erythropoietin receptor

James L. Miller, Timothy J. Church, Dmitri Leonoudakis, Karen Lariosa-Willingham, Normand L. Frigon, Connie S. Tettenborn, Jeffrey R. Spencer, and Juha Punnonen

Molecular Pharmacology

Supplemental Data, Synthesis of STS-E412

The structure of STS-E412 is shown in Supplemental Figure 1.

![Structure of STS-E412](image)

**Supplemental Figure 1:** Structure of STS-E412

Synthesis of 2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (STS-E412)

**General.** All reagents were obtained commercially from Acros and Sigma-Aldrich and used as obtained. Thin layer chromatography was performed on EM Science silica gel 60 F_{254} plates, with visualization via UV fluorescence quenching and by exposure to iodine vapor. Chromatographic purification of products was performed on a Teledyne ISCO CombiFlash Model Sg100c, fitted with a Teledyne ISCO RediSep Rf purified silica gel column. Compound purity was characterized with an Agilent HP1100 analytical high-performance liquid chromatography (HPLC) instrument equipped with a diode array detector (215/254...
nm). The HPLC was fitted with an analytical reversed-phase C18 column (Higgins Analytical, Targa C18, 50 x 2.1 mm, 3 µm); operating at 40°C, the mobile phases 0.1% trifluoroacetic acid/water (A) and 0.1% trifluoroacetic acid/acetonitrile (B) were used for a gradient elution of B (2 to 98%) over 10 minutes at a flow rate of 0.6 ml/min. Proton NMR (¹H-NMR) spectra were obtained with a JEOL ECX 400 instrument operating at 400 MHz. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed on an Agilent Series 1100 MSD instrument operating in positive ion mode (electrospray) with a scan range of 100-1000 Da. All compounds were of ≥ 95% purity.

**Supplemental Figure 2.** Synthesis scheme of STS-E412

5,7-Dimethyl-2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]pyrimidine

2,4-Pentanedione (11.54 g, 115 mmol), 3-amino-5-methylthio-1H-1,2,4-triazole (15.0 g, 115 mmol) and glacial acetic acid (115 ml) were warmed in an oil bath at 135°C for 15 hours. The mixture was cooled to room temperature and then slowly poured into stirring ice/water (750 ml) to precipitate the product. Solids were isolated by filtration, rinsed with 250 ml of water, and dried under reduced pressure to afford the title compound as a powder (15.9 g, 71% yield). The solid was used without further purification. Thin layer chromatography (TLC) Rₚ = 0.58 (9:1:0.3 CHCl₃/MeOH/AcOH); HPLC Rₛ = 5.0 minutes (2 to 98% gradient elution of MeCN/H₂O + 0.1% TFA over 10 minutes, where Rₛ = 0.7 minutes for 3-amino-5-methylthio-1H-1,2,4-triazole).
2-Methanesulfonyl-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine

5,7-dimethyl-2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]pyrimidine (9.9 g, 51.0 mmol), sodium tungstate dihydrate (505 mg, 1.53 mmol), and glacial acetic acid (95 ml) were cooled to 10°C using an ice-water bath. A solution of 35% H_2O_2 in water (13.1 ml, 153.1 mmol) was added dropwise, and the mixture was stirred at room temperature for 10 minutes and at 60°C for 60 minutes. The reaction was cooled to room temperature, and a solution of sodium sulfite (3.0 g Na_2SO_3 in 20 ml of water) (~5 ml) was added and allowed to stir 30 minutes at room temperature. The reaction was concentrated to ~20 ml, and water was added to precipitate the product. The solid was collected by filtration, rinsed with cold water (~30 ml), and dried under vacuum to afford the title compound as a white powder (7.78 g, 67% yield). TLC R_f = 0.60 (9:1:0.1 CHCl_3/iPrOH/AcOH); HPLC R_t = 1.3 minutes (2 to 98% gradient elution of MeCN/H_2O + 0.1% TFA over 10 minutes); ^1H-NMR (DMSO-d_6, 400 MHz) δ ppm: 7.41 (d, 1H), 3.46 (s, 3H), 2.76 (d, 3H), 2.64 (s, 3H).

2-(4-Chlorophenoxy)ethanol

4-chlorophenol (5.61 g, 43.65 mmol), 2-bromoethanol (6.0 g, 48.0 mmol), sodium hydroxide (2.62 g, 65.47 mmol), and water (18 ml) were warmed in an oil bath at 80°C for 19 hours. The mixture was partitioned using ethyl acetate (100 ml) and water (50 ml). The aqueous layer was extracted once more with ethyl acetate (40 ml). The combined organic layer was washed with 1N NaOH (6 x 40 ml) and saturated aqueous NaCl (40 ml), dried (Na_2SO_4), filtered, and concentrated. The crude mixture was purified by silica gel column chromatography using 30-100% ethyl acetate in hexanes to afford the title compound as a clear oil (5.67 g, 75% yield). TLC R_f = 0.48 (1:1 Hexane/EtOAc). HPLC R_t = 4.5 minutes (2 to 98% gradient elution of MeCN/H_2O + 0.1% TFA over 10 minutes).
2-[2-(4-Chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine (STS-E412)

Sodium hydride (60% dispersion in mineral oil) (1.26 g, 31.62 mmol) was added portion-wise (4 x ~315 mg) over 10 minutes to a solution of 2-(4-chlorophenoxy)ethanol (4.0 g, 23.19 mmol) in tetrahydrofuran (40 ml). The reaction was stirred for 10 minutes, and 2-methanesulfonyl-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine (4.76 g, 21.08 mmol) was added portion-wise (5 x ~0.95 g). An additional volume of tetrahydrofuran (10 ml) was added to aid stirring. After 30 minutes, the reaction was concentrated and then partitioned between dichloromethane (100 ml) and water (50 ml). The aqueous layer was extracted once more with dichloromethane (100 ml), and the combined organic layers were dried (Na$_2$SO$_4$), filtered, and concentrated. The crude material was purified as follows. The solid was dissolved in 1% methanol in dichloromethane (60 ml), stirred for 10 minutes at room temperature over silica gel (10 g), filtered, concentrated, and then crystallized from warm ethanol (125 ml) and water (13 ml). The solid was dissolved again in 2% methanol in dichloromethane (30 ml) with silica gel (5 g), stirred for 20 minutes, filtered, and concentrated. Recrystallization from warm ethanol (95 ml) afforded the title compound as an off-white solid (4.22 g, 62% yield). TLC R$_f$ = 0.38 (EtOAc); HPLC R$_t$ = 5.7 minutes (2 to 98% gradient elution of MeCN/H$_2$O + 0.1% TFA over 10 minutes); $^1$H NMR (DMSO-d$_6$, 400 MHz) δ ppm: 7.34 (d, 2H), 7.09 (s, 1H), 7.02 (d, 2H), 4.67 (t, 2H), 4.36 (t, 2H), 2.63 (s, 3H), 2.52 (s, 3H). EM (calc.): 318.1; MS (ESI) m/e: 319.2 (M+H)$^+$. 


**Supplemental Data, ELISA method development and validation**

Phospho-protein and total protein ELISA were established using commercially available reagents. pEPOR, pYpY-JAK2 and AKT ELISAs were performed according to manufacturer’s instructions (see Materials and Methods). Total CD131 and phospho-CD131 (pCD131) ELISAs were performed as described in Materials and Methods and below. Cell lysis buffer contained 20 mM Tris-HCl pH 7.5), 150 mM NaCl, 1 mM Na₂EDTA, 1 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na₃VO₄ supplemented with 1% Triton X-100, 1 μg/ml leupeptin and 100 KIU/ml aprotinin. Capture antibodies were diluted in DPBS without Ca²⁺ and Mg²⁺ and captured on Costar high binding plates (Corning Incorporated #9018) overnight at 4°C then blocked with DPBS supplemented with BSA (2%) for 4-6 hours. All other antibodies were diluted in a solution of composition 20 mM TRIS pH 7.4, 137 mM NaCl supplemented with 0.05% v/v Tween-20 and 1% w/v BSA. Wash buffer was purchased from R&D Systems, Inc. (#WA126).

**HEK293 cells do not express cell surface EPOR or CD131:** Whole cell ELISA was used to detect cell-surface expression of EPOR and CD131. Briefly, HEK293 cells, HEK293 cells transfected with human EPOR alone (HEK293/EPOR) and HEK293 cells transfected with CD131 alone (HEK293/CD131) were harvested using DPBS without Ca²⁺ and Mg²⁺ and suspended in HEPES-buffered (pH 7.4) Hanks salts supplemented with 2% BSA (HHB buffer) at a density of 1x10⁶ cells per ml. Detection utilized ELISA capture monoclonal antibodies targeting extracellular epitopes on EPOR (R&D Systems, Inc. #842365, 2.7 μg/ml final) or CD131 (BD Biosciences #554534, 1 μg/ml final) diluted in HHB buffer. Cell suspensions were mixed with (1) no detection antibody, (2) EPOR detection antibody or (3) CD131 detection antibody and incubated at room temperature for 4 hours in 1.5 ml Eppendorf-style tubes. Following incubation, unbound antibody was removed by washing cells twice in 1 ml (ca. 100-fold volume excess) of HHB buffer (400xg for 10 minutes). Cell-surface bound antibody was detected using an HRP-conjugated goat anti-mouse antibody (Jackson Immuno-Research Laboratories, Inc. #115-035-003) diluted 1:2,000 in HHB buffer and incubated for 1 hour at room temperature. Unbound secondary
antibody was removed by washing cells twice in 1 ml HBB buffer (400xg for 10 minutes). Following color development using TMB reagent (400 μl per tube) the reaction was quenched by addition of 100 μl 1 M H₂SO₄ and clarified by centrifugation (13,000g, 10 minutes).

Supplemental Figure 3: EPOR and CD131 capture antibodies detect only cognate cell-surface receptors in HEK293 cells. Results for HEK293, HEK293/EPOR and HEK293/CD131 cell lines are shown. In the figure, open bars represent whole-cell ELISA signals in absence of anti-EPOR antibody and anti-CD131 antibodies, black bars represent whole-cell ELISA signals in the presence of anti-EPOR antibody and grey bars represent whole-cell ELISA signals in the presence of anti-CD131 antibody. Bars represent mean ± S.D. for triplicate measurements.

Results for cell-surface ELISA (Supplemental Figure 3) show that HEK293 cells do not express significant levels of EPOR or CD131 and that the capture antibodies also used in pEPOR and pCD131 signaling assays are selective for their cognate receptors. In the absence of anti-EPOR or anti-CD131 antibodies, assay background increased from 0.037 ± 0.0007 (absorbance units, OD 450nm) (mean ± S.D., n=27, empty wells) to 0.068 ± 0.002 (n=3) for untransfected HEK293 cells, to 0.055 ± 0.00068 (n=3) for HEK293/EPOR cells and to 0.053 ± 0.00032 (n=3) for HEK293/CD131 cells. Comparing ELISA signals in HEK293/EPOR vs. HEK293 cells, assay signals using anti-EPOR antibody increased
by 20-fold over background \( p=1.7 \times 10^{-10} \) while assays signals were unchanged using anti-CD131 antibody \( p=0.659 \). In HEK293/CD131 vs. HEK293 cells, assay signals using anti-CD131 antibody increased by ca. 30-fold over background \( p=1.6 \times 10^{-8} \) while assays signals were unchanged using anti-EPOR antibody \( p=0.258 \). These results suggest that from 95% to 97% of ELISA signals arise from exogenously-expressed EPOR and CD131, that the anti-EPOR antibody does not cross-react with CD131 and that the anti-CD131 does not cross-react with EPOR.

**Performance of pEPOR ELISA:** The phospho-EPOR (pEPOR) ELISA used in these studies is produced by R&D Systems, Inc. (#DYC-5200). In manufacturer product information, analysis of rhEPO-induced EPOR tyrosine phosphorylation correlates with immunoprecipitation-western blot analysis, while the ELISA is significantly more sensitive than western at the lowest limit of detection. We found that assay backgrounds were proportional to the amount of total protein in assay wells, therefore assays were performed within a range of total protein per well where background was linearly proportional to total protein and within a particular ELISA assay wells contained the same amount of total protein, typically 50-100 \( \mu \)g per well, in a final volume of 0.1 ml, adjusted by addition of cell lysis buffer. Validation studies were performed in which purified standard was “spiked” into cell lysates derived from untransfected HEK293 cells to show that the amplitudes of ELISA assay signals were directly proportional to added standard. Typical standard curves for pEPOR ELISA ranged from 6.25 to 400 pg pEPOR per well and signals were significant at all concentrations (Supplemental Data, Table 1). pEPOR ELISAs performed using untransfected HEK293 cells produced basal (“apparent”) pEPOR between 0.1-0.4 pg per \( \mu \)g protein. Addition of rhEPO (10 IU/ml) did not significant increase the measured pEPOR in these assays (Figure 2-E; Supplemental Data Figure 4). Transfection of hEPOR into HEK293 cells produced an increase in basal pEPOR to 1-4 pg/\( \mu \)g (Supplemental Data, Figure 4) which increased by an additional 2- to 4-fold over basal levels following treatment with rhEPO (Supplemental Data, Figure 4). Similar results were observed using pYpY-JAK2 ELISA standard (Supplemental Data, Table 1).
Supplemental Data, Table 1: Significance tests for pEPOR and pYpY-JAK2 standard curves. Table presents results for 9 (pEPOR) or 6 (pYpY-JAK2) independent experiments. “Fold-change over background” indicates the relative absorbance in ELISA in the presence of indicated added standard and is expressed as mean ± S.E.M. p-values were determined using a student t-test and pair-wise comparison vs. background (no added standard).

Performance of total CD131 and pCD131 ELISAs: Total CD131 measured in HEK293 and TF-1 cells (positive control) is shown in Supplemental Data Figure 5. CD131 in cell lysates was captured using a monoclonal antibody targeting an extracellular epitope on CD131 (BD Biosciences #554534, 1 μg/well) and detected with a rabbit polyclonal antibody (Santa Cruz Biotechnology, Inc., #SC-13945, 1:400 dilution) followed by an HRP-conjugated goat x rabbit antibody (Jackson Immunoresearch Laboratories, Inc. #111-035-003, diluted 1:2,000). Results show that for both HEK293 and TF-1 cell lysates, ELISA signals increase in proportion to added cell lysate, confirms that untransfected HEK293 cells do not express significant amounts of CD131 while the ELISA detects measurable CD131 in positive control TF-1 cell lysates. Treatment of TF-1 cells starved of IL-3 for 24 hours with 10 ng/ml rhIL-3 (PeproTech # 200-03) shows significant increases in pCD131. Supplemental Data Figure 6 shows the time-course for increases in pCD131 in TF-1 cells. Increases in pCD131 reached a maximum approximately 10 minutes after addition of rhIL-3. pCD131 ELISA signals were linear with total protein per ELISA well between 50 and 375 μg per well (Supplemental Data Figure 7), therefore pCD131 ELISAs were performed within this range of total protein and all ELISA wells within a particular ELISA contained the same amount of total protein.

<table>
<thead>
<tr>
<th>pEPOR (pg)</th>
<th>fold-change over background</th>
<th>p-value</th>
<th>pYpY-JAK2 (U/ml)</th>
<th>fold-change over background</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25</td>
<td>1.1 ± 0.1</td>
<td>0.0068</td>
<td>1.5625</td>
<td>1.5 ± 0.1</td>
<td>0.005</td>
</tr>
<tr>
<td>12.5</td>
<td>1.5 ± 0.1</td>
<td>0.0004</td>
<td>3.125</td>
<td>2.0 ± 0.2</td>
<td>0.001</td>
</tr>
<tr>
<td>25</td>
<td>2.0 ± 0.2</td>
<td>5.9E-05</td>
<td>6.25</td>
<td>3.1 ± 0.3</td>
<td>0.001</td>
</tr>
<tr>
<td>50</td>
<td>3.1 ± 0.4</td>
<td>4.9E-05</td>
<td>12.5</td>
<td>5.3 ± 0.6</td>
<td>0.001</td>
</tr>
<tr>
<td>100</td>
<td>5.3 ± 0.9</td>
<td>5.6E-05</td>
<td>25</td>
<td>9.3 ± 1.1</td>
<td>2.6E-04</td>
</tr>
<tr>
<td>200</td>
<td>9.8 ± 1.8</td>
<td>3.4E-05</td>
<td>50</td>
<td>16.0 ± 1.9</td>
<td>2.2E-05</td>
</tr>
<tr>
<td>400</td>
<td>17.7 ± 3.4</td>
<td>2.0E-05</td>
<td>100</td>
<td>20.4 ± 2.0</td>
<td>5.6E-09</td>
</tr>
</tbody>
</table>
Supplemental Data, Figure 4: pEPOR ELISA does not detect increases in pEPOR in the absence of transfected hEPOR. Open bars represent pEPOR in HEK293 cells and HEK293/EPOR cell lines (designated A1-D4) in the absence of rhEPO. Solid bars represent pEPOR in HEK293 cells and HEK293/EPOR cell lines following addition of 10 IU/ml rhEPO. Assays were performed as described in Materials and Methods and are presented as mean ± S.D. for triplicate measurements.

Supplemental Data, Figure 5: Detection of total CD131 in HEK293 and TF-1 cells. Data represent mean ± S.D. for triplicate measurements. ELISA was performed as described in text.
Supplemental Data, Figure 6: Time-course for increase in pCD131 in TF-1 cells. TF-1 cells were starved of rhIL-3 for 24 hours prior to the assay. The signaling assay was initiated by addition of 10 ng/ml rhIL-3. Two minutes prior to indicated time-points, cells were collected by centrifugation (800g, 30 seconds), washed in DPBS without Ca\(^{2+}\) and Mg\(^{2+}\) and collected by centrifugation (800g, 30 seconds) and the reaction quenched by addition of ice-cold cell lysis buffer. pCD131 ELISA was performed using 125 µg total protein per ELISA well as described in Materials and Methods. Data represent mean ± S.D. for triplicate measurements.

Supplemental Data, Figure 7: Linearity of detection of pCD131 in TF-1 cells. Cell lysates derived from TF-1 cells, starved of IL-3 for 24 hours (but not subsequently treated with rhIL-3), were captured on pCD131 ELISA plates and processed as described in the text. Data represent mean ± S.D. for triplicate measurements.
Supplemental Data, Table 2, Characterization of STS-E412 interactions against 68 molecular targets using Ricerca Lead Profiling® assay panel.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Species</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Serine/Threonine Kinase</td>
<td>human</td>
<td>9</td>
</tr>
<tr>
<td>GSK3B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenosine A1</td>
<td>human</td>
<td>3</td>
</tr>
<tr>
<td>Adenosine A2A</td>
<td>human</td>
<td>5</td>
</tr>
<tr>
<td>Adenosine A3</td>
<td>human</td>
<td>6</td>
</tr>
<tr>
<td>Adrenergic A1a</td>
<td>rat</td>
<td>10</td>
</tr>
<tr>
<td>Adrenergic α1B</td>
<td>rat</td>
<td>16</td>
</tr>
<tr>
<td>Adrenergic α1D</td>
<td>human</td>
<td>16</td>
</tr>
<tr>
<td>Adrenergic α2A</td>
<td>human</td>
<td>5</td>
</tr>
<tr>
<td>Adrenergic β1</td>
<td>human</td>
<td>0</td>
</tr>
<tr>
<td>Adrenergic β2</td>
<td>human</td>
<td>-3</td>
</tr>
<tr>
<td>Androgen (Testosterone) AR</td>
<td>rat</td>
<td>8</td>
</tr>
<tr>
<td>Bradykinin B1</td>
<td>human</td>
<td>12</td>
</tr>
<tr>
<td>Bradykinin B2</td>
<td>human</td>
<td>-4</td>
</tr>
<tr>
<td>Calcium Channel, L-type, Benzothiazepine</td>
<td>rat</td>
<td>28</td>
</tr>
<tr>
<td>Calcium Channel, L-type, Dihydropyridine</td>
<td>rat</td>
<td>2</td>
</tr>
<tr>
<td>Calcium Channel, N-type</td>
<td>rat</td>
<td>1</td>
</tr>
<tr>
<td>Cannabinoid CB1</td>
<td>human</td>
<td>-7</td>
</tr>
<tr>
<td>Dopamine D1</td>
<td>human</td>
<td>1</td>
</tr>
<tr>
<td>Dopamine D2S</td>
<td>human</td>
<td>8</td>
</tr>
<tr>
<td>Dopamine D3</td>
<td>human</td>
<td>-10</td>
</tr>
<tr>
<td>Dopamine D4.2</td>
<td>human</td>
<td>-9</td>
</tr>
<tr>
<td>Endothelin ETA</td>
<td>human</td>
<td>-6</td>
</tr>
<tr>
<td>Endothelin ETB</td>
<td>human</td>
<td>-5</td>
</tr>
<tr>
<td>Epidermal Growth Factor (EGF)</td>
<td>human</td>
<td>2</td>
</tr>
<tr>
<td>Estrogen Erα</td>
<td>human</td>
<td>0</td>
</tr>
<tr>
<td>GABAA, Flunitrazepam, Central</td>
<td>rat</td>
<td>45</td>
</tr>
<tr>
<td>GABAA, Muscimol, Central</td>
<td>rat</td>
<td>2</td>
</tr>
<tr>
<td>GABAB1A</td>
<td>human</td>
<td>-9</td>
</tr>
<tr>
<td>Glucocorticoid</td>
<td>human</td>
<td>7</td>
</tr>
<tr>
<td>Glutamate, Kainate</td>
<td>rat</td>
<td>14</td>
</tr>
<tr>
<td>Glutamate, NMDA, Agonism</td>
<td>rat</td>
<td>2</td>
</tr>
<tr>
<td>Glutamate, NMDA, glycine</td>
<td>rat</td>
<td>1</td>
</tr>
<tr>
<td>Glutamate, NMDA, Phencyclidine</td>
<td>rat</td>
<td>-1</td>
</tr>
<tr>
<td>Histamine H1</td>
<td>human</td>
<td>4</td>
</tr>
<tr>
<td>Histamine H2</td>
<td>human</td>
<td>-5</td>
</tr>
<tr>
<td>Histamine H3</td>
<td>human</td>
<td>-2</td>
</tr>
<tr>
<td>Interleukin IL-1</td>
<td>mouse</td>
<td>5</td>
</tr>
<tr>
<td>Leukotriene, Cysteinyl CYSLT1</td>
<td>human</td>
<td>5</td>
</tr>
<tr>
<td>Melatonin MT1</td>
<td>human</td>
<td>15</td>
</tr>
<tr>
<td>Muscarinic M1</td>
<td>human</td>
<td>-1</td>
</tr>
<tr>
<td>Muscarinic M2</td>
<td>human</td>
<td>-12</td>
</tr>
<tr>
<td>Muscarinic M3</td>
<td>human</td>
<td>2</td>
</tr>
<tr>
<td>Neuropeptide Y, Y1</td>
<td>human</td>
<td>-3</td>
</tr>
<tr>
<td>Neuropeptide Y, Y2</td>
<td>human</td>
<td>4</td>
</tr>
<tr>
<td>Nicotinic Acetylcholine</td>
<td>human</td>
<td>10</td>
</tr>
<tr>
<td>Nicotinic Acetylcholine α1,</td>
<td>human</td>
<td>1</td>
</tr>
<tr>
<td>Opiate δ1 (OP1, DOP)</td>
<td>human</td>
<td>-1</td>
</tr>
<tr>
<td>Opiate κ (OP2, KOP)</td>
<td>human</td>
<td>14</td>
</tr>
<tr>
<td>Opiate μ (OP3, MOP)</td>
<td>human</td>
<td>-9</td>
</tr>
<tr>
<td>Platelet Activating Factor (PAF)</td>
<td>mouse</td>
<td>7</td>
</tr>
<tr>
<td>Potassium Channel, KATP</td>
<td>hamster</td>
<td>7</td>
</tr>
<tr>
<td>Potassium Channel, HERG</td>
<td>human</td>
<td>17</td>
</tr>
<tr>
<td>Prostanoid EP4</td>
<td>human</td>
<td>-2</td>
</tr>
<tr>
<td>Purinergic P2X</td>
<td>rabbit</td>
<td>3</td>
</tr>
<tr>
<td>Purinergic P2Y</td>
<td>rat</td>
<td>15</td>
</tr>
<tr>
<td>Ropipram</td>
<td>rat</td>
<td>-4</td>
</tr>
<tr>
<td>Serotonin (5-Hydroxytryptamine), 5-HT1A</td>
<td>human</td>
<td>-4</td>
</tr>
<tr>
<td>Serotonin (5-Hydroxytryptamine), 5-HT1B</td>
<td>human</td>
<td>15</td>
</tr>
<tr>
<td>Serotonin (5-Hydroxytryptamine), 5-HT3</td>
<td>human</td>
<td>-1</td>
</tr>
<tr>
<td>Sigma α1</td>
<td>human</td>
<td>-6</td>
</tr>
<tr>
<td>Tachykinin NK1</td>
<td>human</td>
<td>1</td>
</tr>
<tr>
<td>Thyroid Hormone</td>
<td>rat</td>
<td>1</td>
</tr>
<tr>
<td>Transporter, Dopamine (DAT)</td>
<td>human</td>
<td>20</td>
</tr>
<tr>
<td>Transporter, GABA</td>
<td>rat</td>
<td>8</td>
</tr>
<tr>
<td>Transporter, Norepinephrine (NET)</td>
<td>human</td>
<td>35</td>
</tr>
<tr>
<td>Serotonin (SERT) Transporter,</td>
<td>human</td>
<td>-5</td>
</tr>
<tr>
<td>(5-Hydroxytryptamine)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The concentration of STS-E412 was 10 μM in all assays. Values in the column labeled “% inhibition” represent the average of duplicate measurements.
Supplemental Data, Determination of STS-E412 in plasma and brain in Sprague-Dawley rats following intraperitoneal administration

STS-E412 levels were determined in plasma and brain of male Sprague-Dawley rats 30 minutes after intraperitoneal (IP) administration. All procedures were approved by the Institutional Animal Care and Use Committee (IACUC, Ricerca Biosciences LLC, Concord OH) and complied with Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington DC, 2011). STS-E412 was dissolved as a clear solution at 1 mg/mL in 10% N,N-dimethylacetamide /10% Cremophor EL / 80% D5W (5% dextrose in water) and administered as a single IP dose of 10 mg kg\(^{-1}\) to each of three rats. Animals were observed for changes in appearance and behavior during 30 minutes following dosing and no changes were observed. After 30 minutes, rats were euthanized by exsanguination while under deep anesthesia induced with CO\(_2\)/O\(_2\). Blood was collected into K\(_2\)EDTA tubes and processed to plasma within 30 minutes of collection (centrifugation at 2,000g for 10 minutes at 5°C). The plasma was stored frozen at -79.0 to -65.8 °C pending analysis. After blood collection, the brains of each animal were removed, rinsed with saline, blotted dry, weighed, and frozen on dry ice.

STS-E412 was extracted from plasma and brain tissue samples and clarified by centrifugation prior to analysis. Briefly, brain homogenates were prepared by homogenizing a combination of 1 part brain tissue (in grams) with 2 parts PBS buffer (in mL). Compound was extracted from brain homogenate or plasma (50 μL) by precipitation with 500 μL of 0.1% formic acid in acetonitrile containing an internal standard and the samples vortexed for 1 minute followed by centrifugation at 14,000 rpm at room temperature for 10 minutes. Following centrifugation the supernatant was transferred to plastic auto-sampler vials containing 200 μL of 0.1% formic acid in 20/80 methanol/water, mixed and analyzed by LC-MS/MS for concentrations of the STS-E412.

LC-MS/MS analysis was performed using an AB Sciex API 4000 with Turbo IonSpray®. Positive ions were monitored in MRM mode with Precursor \(\rightarrow\) Product ion pairs m/z 318.09 \(\rightarrow\) 165.10. HPLC
separation was performed using a reverse-phase Phenomenex Synergi Polar RP column (4 μm particle size, 50 x 2.0 mm). Mobile phases were 0.1 % formic acid in water (A) and 0.1 % formic acid in methanol (B). Separations were produced by step-wise gradient elution from 60% to 95% B over 3.5 minutes at a flow rate of 300 μL/min.

Plasma concentration of STS-E412 30 minutes after IP dosing was 4073 ± 121 ng/mL. Brain concentration of STS-E412 30 minutes after IP dosing was 1589 ± 25 ng/mL. The calculated brain/plasma concentration ratio following a single IP dose of STS-E412 (10 mg kg⁻¹) was 0.39.