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Abstract 

The Ras/Raf/MAPK and PI3K/Akt/mTOR pathways are key signaling cascades involved in 

the regulation of cell proliferation and survival, and have been implicated in the pathogenesis 

of several types of cancers, including AML. The oncogenic activity of eIF4E driven by Mnk 

kinases is a convergent determinant of the two cascades, suggesting that targeting the 

Mnk/eIF4E axis may provide therapeutic opportunity for the treatment of cancer. Herein, a 

potent and selective Mnk2 inhibitor MNKI-85, and a dual-specific Mnk1 and Mnk2 inhibitor 

MNKI-19, both derived from a thienopyrimidinyl chemo-type, were selected to explore their 

anti-leukemic properties. MNKI-19 and MNKI-85 are effective in inhibiting the growth of 

AML cells which possess an M5 subtype with FLT3-ITD mutation. Further mechanistic 

studies show that the downstream effects with respect to the selective Mnk1/2 kinase 

inhibition in AML cells causes G1 cell cycle arrest followed by induction of apoptosis. 

MNKI-19 and MNKI-85 demonstrate similar Mnk2 kinase activity and cellular anti-

proliferative activity, but exhibit different time-dependent effects on cell cycle progression 

and apoptosis. Collectively, this study shows that pharmacologic inhibition of both Mnk1 and 

Mnk2 can result in a more pronounced cellular response than targeting Mnk2 alone. MNKI-

85, a first-in-class inhibitor of Mnk2, however, can be used as a powerful pharmacologic tool 

in studying the Mnk2/eIF4E-mediated tumorigenic mechanism. In conclusion, this study 

provides a better understanding of the mechanism underlying the inhibition of AML cell 

growth by Mnk inhibitors and suggests their potential utility as a therapeutic agent for AML. 
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Introduction 

Acute myeloid leukemia is a genetically heterogeneous cancer characterized by a 

collection of mutations and chromosomal translocations in immature myeloid cells that 

cooperate to interrupt the proliferative or survival pathways (Gilliland et al., 2004). The 

aberrant fusion transcription factors expressed in myeloid cells can impair hematopoietic 

differentiation; however, single genetic alteration is insufficient to induce leukemogenesis in 

most cases (He et al., 1997; Yuan et al., 2001). Particularly, constitutively activated signal 

transduction pathways derived from the mutated genes that normally regulate hematopoietic 

cell growth and homeostasis is an additional contributor to the pathogenesis of AML (Dash 

and Gilliland, 2001).  

The Ras/Raf/MAPK and PI3K/Akt/mTOR signaling pathways are two vital cascades that 

are physiologically relevant to diverse cell stimuli involved in differentiation, proliferation 

and apoptosis (Hanada et al., 2004; Lewis et al., 1998). Activation of these pathways has 

been associated with most AML cases (Martelli et al., 2006; Milella et al., 2001). One 

another common molecular defect, FLT3 mutation, is highly expressed in AML, accounting 

for 70-100% of all cases (Gilliland and Griffin, 2002). Specifically, the presence of ITDs in 

the juxtamembrane domain of FLT3 was found in nearly one third of patients with AML and 

is associated with a poor prognosis (Meshinchi et al., 2001). Therefore, these signal 

transduction cascades may represent promising areas to exploit with therapeutic intent in 

AML. 

Interestingly, the aforementioned cascades consequently converge on the Mnks/eIF4E axis 

that plays a significant regulatory role in mRNA translation and malignant transformation. 

The phosphorylation of eIF4E by Mnk at Ser209 has been implicated in tumorigenesis and 

development (Furic et al., 2010; Waskiewicz et al., 1997). While Mnk activity is not essential 
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for normal cell growth (Ueda et al., 2004), the oncogenic activity of Mnk-driven eIF4E has 

shown to be vital for the proliferation and survival of cancer cells (Topisirovic et al., 2004; 

Wendel et al., 2007). Therefore, therapeutic targeting of the Mnk offers an opportunity for the 

treatment of cancer.   

Mnks belong to a serine/threonine kinases family, which were identified as unique 

interacting proteins for ERK and p38 kinases in the MAPK cascade (Roux and Blenis, 2004; 

Waskiewicz et al., 1997). Two Mnk human genes have identified, expressing Mnk1 and 

Mnk2 proteins which are ~72% identical in their amino acid sequence (Slentz-Kesler et al., 

2000). Alternative splicing in the two Mnk genes further revealed the existence of four 

isoforms: Mnk1a, Mnk1b, Mnk2a and Mnk2b (Scheper et al., 2003; Waskiewicz et al., 1997). 

Bearing a nuclear localization signal and a polybasic sequence in the common basic N-

terminal stretch; all four isoforms preferentially localize in the nucleus and phosphorylate 

eIF4E efficiently.  

The difference between the four isoforms arises from the C-termini, in which only the a-

isoforms have a MAPK-binding site for interaction with ERK or p38 kinases (Parra et al., 

2005). Despite this, Mnk1a and Mnk2a differ in basal activity as shown in in vitro studies 

(Scheper et al., 2001). Activation of ERK or p38 kinase could result in marked increase in the 

activation of the low basal activity of Mnk1a but negligibly influence the high basal activity 

of Mnk2a. Both Mnk1a and Mnk2a bind preferentially to ERK but only Mnk1a is a substrate 

for p38. In appreciation of the dissimilarity in the regulatory features of Mnk1 and Mnk2, 

these findings may indicate differences in activity and regulation of Mnks towards eIF4G to 

phosphorylate eIF4E.  

An increasing body of evidence has demonstrated the potential anti-leukemic properties of 

pharmacologic Mnk inhibitors (Altman et al., 2013; Diab et al., 2014b; Lim et al., 2013). 
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Cercosporamide, a non-selective Mnk inhibitor (Konicek et al., 2011), reduces leukemic cell 

proliferation in MM6, K562 and U937 cell lines in a dose-dependent manner (Altman et al., 

2013). The antitumor efficacy of cercosporamide in MV4-11 xenografts supports its Mnk-

targeted anti-leukemic effects. The cell-specific effect, predominantly in leukemia cells, of 

Mnk inhibition, have been recently confirmed by our recent discovery of 5-(2-

(phenylamino)pyrimidin-4-yl)thiazole-2(3H)-one Mnk inhibitors (Diab et al., 2014b).  

We have recently identified thieno[2,3-d]pyrimidine derivatives as highly potent and 

selective Mnk inhibitors. Herein, a potent dual-specific Mnk1/2 inhibitor MNKI-19 and a 

selective Mnk2 inhibitor MNKI-85 were utilized to provide mechanistic insights into the 

effects of Mnk isoforms on leukemia cells. Both MNKI-19 and MNK-85 are able to reduce 

the level of phosphorylated eIF4E and subsequently cause G1 phase cell cycle arrest and 

apoptosis in FLT3-ITD-expressed AML cells. The current report also demonstrates that a 

combined inhibition of Mnk1 and Mnk2 results in more pronounced cellular responses than 

targeting Mnk2 alone, supporting the Mnk inhibitors can be developed as potential anti-

cancer agents.    

 

Materials and Methods 

Inhibitor compounds and proteins 

Syntheses of MNKI-19 and MNKI-85 were described below. The Mnk inhibitor N3-(4-

fluorophenyl)-1H-pyrazolo-[3,4-d]pyrimidine-3,4-diamine (CGP57380) was purchased from 

Sigma Aldrich, and used as a positive control. All compounds used were dissolved in 

dimethylsulfoxide (DMSO) at a stock concentration of 10 mM, and stored at -20 °C in small 

aliquots. eIF4E-derived peptides, TAMRA-DTATKSGSTTKNR, TAMRA-
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DTATKSG(phospho)STTKNR and DTATKSGSTTKNR, were custom synthesized by 

Mimotopes Pty. Ltd. (Melbourne, Australia). Proteins Mnk1 and Mnk2 were purchased from 

Life Technologies and Merck Millipore, respectively.  

 

Synthesis of MNKI-19 and MNKI-85 

1H and 13C NMR spectra were recorded at 298 K on a Bruker AVANCE III HD 500 

spectrometer (1H at 500.16 MHz and 13C at 125.76 MHz; Faellanden, Switzerland), and were 

analyzed using Bruker Topspin 3.2 software. 1H and 13C NMR spectra are referenced to 1H 

signals of residual nondeuterated solvents and 13C signals of deuterated solvents, respectively. 

1H NMR signals are reported with chemical shift values δ (ppm), multiplicity (s = singlet, d = 

doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet and br = broad), 

relative integral, coupling constants J (Hz) and assignments. High resolution mass spectra 

were recorded on an AB SCIEX TripleTOF 5600 mass spectrometer (Concord, ON, Canada), 

and ionization of all samples was carried out using ESI. Melting points were determined 

using an open capillary on a Stuart SMP10 melting point apparatus and are uncorrected. The 

purity of compounds used for biological evaluation was determined by analytic RP-HPLC 

which was carried out on a Shimadzu Prominence UFLC system (UltraFast Liquid 

Chromatograph, Kyoto, Japan) equipped with a CBM-20A communications bus module, a 

DGU-20A5R degassing unit, an LC-20AD liquid chromatograph pump, an SIL-20AHT auto-

sampler, an SPD-M20A photo diode array detector, a CTO-20A column oven and a 

Phenomenex Kinetex 5u C18 100A 250 mm × 4.60 mm column. Method A (gradient 5% to 

95% CH3OH containing 0.1% formic acid (FA) over 7 min at a flow rate of 1 mL/min, 

followed by 95% CH3OH containing 0.1% FA over 13 min) and method B (gradient 5% to 

95% CH3CN containing 0.1% FA over 7 min at a flow rate of 1 mL/min, followed by 95% 
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CH3CN containing 0.1% FA over 13 min) were used for analytic RP-HPLC. Data acquired 

from analytic RP-HPLC were processed using LabSolutions analysis software.  

To a solution of methyl 4-((4-fluoro-2-isopropoxyphenyl)amino)-5-methylthieno[2,3-

d]pyrimidine-6-carboxylate (200 mg, 0.533 mmol) in a mixture of THF/MeOH/H2O (1:1:1,  

60 mL) was added LiOH (382 mg, 16.0 mmol). The reaction mixture was stirred at room 

temperature overnight and washed with DCM (20 mL). The aqueous layer was heated at 

50 °C for 10 min and acidified to pH 3 with 2 M HCl. The precipitate was filtered, washed 

with H2O (3 × 25 mL) and dried under reduced pressure to give 4-((4-fluoro-2-

isopropoxyphenyl)amino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (MNKI-19) as 

a white solid (128 mg, 67%). RF (DCM:MeOH = 9:1) 0.28. m.p. > 300 °C. 1H NMR (DMSO-

d6): δ 1.32 (d, 6H, J 6.0, OCH(CH3)2), 3.07 (s, 3H, thiophene-CH3), 4.75-4.80 (m, 1H, 

OCH(CH3)2), 6.80 (td, 1H, J 8.5 & 2.5, benzene-H), 7.07 (dd, 1H, J 11.0 & 2.5, benzene-H), 

8.47 (s, 1H, NH), 8.54 (s, 1H, pyrimidine-H), 8.56 (dd, 1H, J 9.0 & 6.5, benzene-H) (one 

carboxylic acid proton signal not observed). 13C NMR (DMSO-d6): δ 15.3, 21.7, 71.5, 101.1 

(d, JC-F 26.8), 106.1 (d, JC-F 21.6), 117.8, 121.9 (d, JC-F 9.4), 123.9, 125.0 (d, JC-F 2.6), 137.5, 

148.3 (d, JC-F 10.6), 155.1, 156.1, 158.6 (d, JC-F 239.0), 163.9, 166.3 (one carbon signal 

overlapping or obscured). HRMS (ESI) m/z 362.1500 [M+H]+; calcd. for C17H17FN3O3S
+ 

362.0969 [M+H]+. Anal. RP-HPLC Method A: tR 16.95 min, purity > 97%; Method B: tR 

12.48 min, purity > 97%. 

To a solution of 4-((4-fluoro-2-isopropoxyphenyl)amino)-5-methylthieno[2,3-

d]pyrimidine-6-carboxylic acid (200 mg, 0.533 mmol) in DMF (3 mL) were added DIPEA 

(193 μL, 1.11 mmol) and HATU (316 mg, 0.830 mmol). The reaction mixture was stirred on 

an ice bath for 30 min. 2-Methoxypropylamine (54.0 μL, 0.609 mmol) was added, and the 

reaction mixture was stirred at room temperature overnight and concentrated under reduced 

pressure. The residue was dissolved in DCM (20 mL), washed with saturated NaHCO3 (3 × 
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20 mL), 10% citric acid (3 × 20 mL), H2O (3 × 20 mL) and brine (3 × 20 mL), and 

concentrated under reduced pressure. The residue was purified by Biotage® FlashMaster 

Personal+ flash chromatography (silica gel, DCM ramping to DCM:EtOAc = 4:1) to give  4-

((4-fluoro-2-isopropoxyphenyl)amino)-N-(2-methoxyethyl)-5-methylthieno[2,3-

d]pyrimidine-6-carboxamide (MNKI-85) as a white solid (118 mg, 51%). RF (DCM:EtOAc = 

7:3) 0.54. m.p. 186-187 °C. 1H NMR (CDCl3): δ 1.43 (d, 6H, J 6.0, OCH(CH3)2), 3.06 (s, 3H, 

thiophene-CH3), 3.41 (s, 3H, OCH3), 3.56-3.60 (m, 2H, CH2CH2O), 3.63-3.67 (m, 2H, 

CH2CH2O), 4.64-4.69 (m, 1H, OCH(CH3)2), 6.34 (br s, 1H, CONH), 6.69 (dd, 1H, J 10.0 & 

3.0, benzene-H), 6.73 (td, 1H, J 8.5 & 2.5, benzene-H), 8.47 (br s, 1H, pyrimidine-NH-

benzene), 8.61 (s, 1H, pyrimidine-H), 8.77 (dd, 1H, J 9.0 & 6.5, benzene-H). 13C NMR 

(CDCl3): δ 16.1, 22.2, 40.1, 59.1, 70.3, 71.9, 100.5 (d, JC-F 27.0), 106.8 (d, JC-F 21.6), 118.3, 

121.7 (d, JC-F 9.0), 124.9, 127.3, 132.9, 147.7 (d, JC-F 9.5), 154.2, 156.2, 159.1 (d, JC-F 241.5), 

162.9 (two carbon signals overlapping or obscured). HRMS (ESI) m/z 419.1394 [M+H]+; 

calcd. for C20H24FN4O3S
+ 419.1548 [M+H]+. Anal. RP-HPLC Method A: tR 16.01 min, 

purity > 96%; Method B: tR 11.98 min, purity > 96%. 

 

Cell Culture 

All leukemia cell lines including HL-60, K562, MOLM-13, MV4-11, PL-21, THP-1 and 

U937 cells were kindly provided by Prof. Richard D’Andrea (University of South Australia, 

Australia) and were maintained in Roswell Park Memorial Institute (RPMI)-1640 with 10% 

fetal bovine serum (FBS). The normal lung fibroblast cell line, WI-38, was obtained from the 

cell bank at the Centre for Drug Discovery and Development, University of South Australia, 

and was maintained in minimum essential media (MEM) with 10% FBS, 2 mM L-glutamine 
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and 1% non-essential amino acid. All cell lines were cultured in a humidified 37 °C, 5% CO2 

incubator. 

 

Kinase Assays 

Inhibition of CDK2/cyclin A1, CDK9/cyclin T1, CDK4/cyclin D1, FLT3, Pim-1, B-Raf, 

MAPK1 (ERK2), MAPK2, PKBα (Akt1), PI3K (p110β/p85α), SAPK2α (p38α) and mTOR 

was measured by radiometric assays using the Millipore KinaseProfilerTM services with ATP 

concentrations within 15 µM of apparent Km(app) for each kinase. For CDK2/cyclin A1, 

CDK9/cyclin T1, CDK4/cyclin D1, FLT3 and Pim-1 kinases, the IC50 values were calculated 

from 10-point dose-response curves and apparent inhibition constants (Ki) were calculated 

from the IC50 values and appropriate ATP values using the Cheng and Prusoff equation 

(Cheng and Prusoff, 1973). For kinase panel screen, the kinase activities were reported as 

remaining activities that were calculated as percentage relative to the averages of multiply 0 

and 100% controls, at a compound concentration of 5 μM. 

 

IMAPTM TR-FRET Progressive Binding System 

Each compound (1 and 10 µM in 0.5% DMSO) was added to the kinase reaction 

containing 1× IMAP reaction buffer with Tween-20 dithiothreitol, distilled H2O, TAMRA-

labeled eIF4E peptide substrate and Mnk kinase in a total assay volume of 20 μL. The kinase 

reaction was initiated by addition of ATP, incubated at 30 °C for 90 min and stopped with 60 

µL progressive binding solution (30% binding buffer A, 70% binding buffer B, progressive 

binding reagent (1:600) and terbium (Tb)-donor (1:400)), followed by incubation in the dark 

at room temperature for 5 h. After the incubation, the plate was read in an EnVision multi-
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label plate reader (PerkinElmer, Beaconsfield, Buckinghamshire, UK). Excitation wavelength 

for Tb-donor was set at 330 nm while emissions were measured at 545 nm (Tb emission) and 

572 nm (TR-FRET emission) in a time-resolved manner with a delay of 200 µs. Positive and 

negative controls were performed in 0.5 % DMSO in the presence and absence of Mnk 

kinases, respectively. 

 

ADP-GloTM Kinase Assay 

The ADP-GloTM assay kits were purchased from Promega (Madison, WI, USA). Serial 

dilution of compounds with a dilution factor of 1:3 was performed to give 8 concentrations 

ranging from 10 µM to 4.5 nM with 0.5% DMSO. Each compound was added to the kinase 

reaction containing 1× kinase reaction buffer, 0.1 mg/mL bovine serum albumin, distilled 

H2O, eIF4E peptide substrate and Mnk kinase in a total assay volume of 15 μL. The kinase 

reaction was initiated by addition of ATP, incubated at 30 °C for 45 min and stopped with 15 

µL ADP GloTM reagent, followed by incubation in the dark at room temperature for 40 min. 

30 µL kinase detection reagent was added. The mixture was further incubated for 40 min 

before reading in an EnVision multi-label plate reader (PerkinElmer, Beaconsfield, 

Buckinghamshire, UK). Positive and negative controls were performed with 0.5 % DMSO in 

the presence and absence of Mnk kinases, respectively. 

 

Cell Viability Assays 

Resazurin (Sigma Aldrich, Castle Hill, NSW) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) (Life Technologies, Mulgrave, VIC) assays were performed on 

all leukemia cell lines and normal lung fibroblast, respectively, as previously reported (Diab 
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et al., 2014b). Compound concentrations required to inhibit 50% of cell growth (GI50) were 

calculated using non-linear regression analysis.  

 

Caspase-3/7 Assay 

Activity of caspase-3/7 was measured using the Apo-ONE Homogeneous Caspase-3/7 kit 

(G7790 Promega, Madison, WI, USA) according to manufacturer instruction and analyzed 

using an EnVision multi-label plate reader (PerkinElmer, Beaconsfield, Buckinghamshire, 

UK). 

 

Cell Cycle and Detection of Apoptosis 

MOLM-13 and MV4-11 (1 × 105) cells were seeded and incubated overnight at 37 °C, 5% 

CO2. Cells were centrifuged at 300 × g for 5 min upon treatment with each compound. Cell 

pellets were collected and fixed with 70% ethanol on ice for 15 min, followed by 

centrifugation at 300 × g for 5 min. The collected pellets were incubated with staining 

solution (50 µg/mL propidium iodide (PI), 0.1 mg/mL ribonuclease A, 0.05% Triton X-100) 

at 37 °C for an hour and analyzed with Gallios flow cytometer (Beckman Coulter, Brea, CA, 

USA). 1 × 105 of the remaining cells were used for the apoptotic assay with Annexin V-

fluorescein isothiocyanate (FITC) Apoptosis Detection Kit (Becton Dickenson, Franklin 

Lakes, NJ, USA) following manufacturer’s instructions. The samples were analyzed by 

fluorescence-activated cell sorting (FACS) with the flow cytometer within one hour of 

staining. Data were analyzed using Kaluza v1.2 (Beckman Coulter, Brea, CA, USA). 
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Western blots 

Western blotting was performed as described previously (Wang et al., 2004). Antibodies 

used were as follows: Mnk2 and phosphorylated Rb at Thr821 (p-RbT821) (Abcam, 

Cambridge, England, UK), β-actin, caspase-3, CDK4, CDK6, cyclin D3, eIF4E, 

phosphorylated eIF4E at Ser209 (p-eIF4ES209), 4E-BP1, phosphorylated 4E-BP1 at Thr37/46 

(p-4E-BP1T37/46) and Thr70 (p-4E-BP1T70), phosphorylated p42/p44 at Thr202/Tyr204 (p-

ERKT202/Y204), Mcl-1, PARP, cleaved PARP, Mnk1, p38, phosphorylated p38 at 

Thr180/Tyr182 (p-p38T180/Y182) (Cell Signaling Technologies), Bcl-2 (Dako, Kingsgrove, 

NSW), p-RbT826 (Sigma Aldrich, Castle Hill, NSW) and p42/44 (Protein Simple). Both anti-

mouse and anti-rabbit immunoglobulin G (IgG) horseradish peroxidise (HRP)-conjugated 

antibodies were obtained from Dako, Kingsgrove, NSW. Enhanced Chemiluminescence 

(ECL) reagents were obtained from GE Healthcare Life Sciences, Rydalmere, NSW. 

 

Statistical Analyses 

All experiments were performed in triplicate and repeated at least three times; representative 

experiments were selected for figures. Statistical significance of differences observed 

between experimental groups was determined using one-way analysis of variance (ANOVA), 

with a minimal level of significance at p < 0.05. 

 

Results  

MNKI-19 and MNKI-85 are potent and selective Mnk inhibitors 
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Thienopyrimidinyl derivative MNKI-19 inhibits Mnk1 and Mnk2 potently with Ki values 

of 0.186 and 0.068 μM, respectively, by biochemical assays (Table 1). MNKI-85 exhibits ~5-

fold increased inhibitory activity against Mnk2 (Ki = 0.031 μM) when compared to MNKI-

19, but is completely inactive against Mnk1. No inhibitory activities against CDK2A, 

CDK9T and CDK4D were detected with both compounds (Ki > 10 μM). To further profile 

kinase selectivity, MNKI-19 and MNKI-85 were tested against a panel of upstream activating 

kinases of Mnks, including B-Raf, MAPK1, MAPK2, Akt1, PI3K, p38α and mTOR, at 5 µM 

(Figure 1). FLT3 protein is an upstream affector of both the Ras/Raf/MAPK and 

PI3K/Akt/mTOR pathways (Wander et al., 2014). As one of the downstream effectors of 

FLT3, Pim-1 was inhibited potently by cercosporamide (Konicek et al., 2011), it is thus of 

great interest to evaluate the inhibitory activities of the compounds against FLT3 and Pim-1. 

The results obtained from in-house IMAP assays for Mnk1 and Mnk2 at 1 µM of the tested 

compounds were included for comparison. Both compounds are inactive against most of the 

upstream kinases, with the exception that MNKI-19 displays moderate activity against Pim-1 

(Ki = 2.35 μM, Table 1). However, it is 12- and 35-fold less active when compared to these of 

Mnk1 and Mnk2, respectively. Collectively, these data suggest the high specificity of MNKI-

19 and MNKI-85 for Mnks. 

 

MNKI-19 and MNKI-85 exhibit anti-leukemic activity  

The anti-proliferative activity of both MNKI-19 and MNKI-85 were assessed on a panel of 

six AML cell lines and one CML cell line (Table 2) using 72 h resazurin assays. CGP57380 

was included as a control. All compounds exhibited the greatest anti-proliferative effects on 

MOLM-13 and MV4-11, both of which expressed FLT3-ITD (Quentmeier et al., 2003), with 

GI50 values ranging between 5.65 and 8.81 µM. In contrast, at least 4-fold higher 

concentrations of compounds MNKI-19 and MNKI-85 were required to suppress the 
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proliferation of HL-60, K562, THP-1 and U937 (wild-type FLT3 expression). Surprisingly, 

PL-21 cells, expressing both wild-type (WT) and mutated alleles, showed less sensitivity in 

response to the same treatments. Different anti-proliferative effects on these cells have also 

been observed with CGP57380, which modestly suppressed cell proliferation with GI50 

values ranging from 6.89 to 38.97 µM, suggesting an alternative mechanism underlying the 

growth inhibitory effects for CGP57380. Taken together, these data suggest that cellular 

effects of the Mnk inhibitors are more pronounced against AML cells with FLT3-ITD 

expression than the non-mutated FLT3 cells. 

It is worth noting that these thienopyrimidinyl derivatives also display cell-specific effect 

between cancerous and normal cells. The normal lung fibroblast WI-38 cells were insensitive 

to both MNKI-19 and MNKI-85 with GI50 values being 98.63 and 43.40 µM, respectively 

(Table 2).  

 

MNKI-19 and MNKI-85 inhibits the phosphorylation of eIF4E and 4E-BP1 

We next examined cellular Mnk inhibition of MNKI-19 and MNKI-85 by Western blot 

analysis (Figure 2). MOLM-13 cells were treated with CGP57380, MNKI-19 or MNKI-85 at 

5 µM and/or 10 µM and 20 µM for a period of 1 h. As shown in Figure 2A, both MNKI-19 

and MNK-85 completely depleted the phosphorylation of eIF4E at Ser209 (p-eIF4ES209) at a 

lower concentration (i.e. 5 µM) whereas CGP57380 moderately suppressed p-eIF4ES209 

within the same concentration. These results confirm the cellular inhibition of Mnk and the 

relative potency of MNKI-19 and MNKI-85 against Mnks over CGP57380. The treatment 

caused no changes in the expressions of total eIF4E, Mnk1 and Mnk2 proteins. To assess the 

Mnk-targeting specificity, the effects of MNKI-19 or MNKI-85 on the upstream activating 

kinases, including p38 MAPK, ERK, eIF4E-binding protein 1 (4E-BP1) and their 

phosphorylated forms, were analyzed in MOLM-13 cells. Incubation with MNKI-19 for 1 h 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 4, 2015 as DOI: 10.1124/mol.115.098012

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #98012 

16 
 

has up-regulated an early transient phosphorylation of ERK and p38 in a dose-dependent 

manner, without affecting their total levels. The expression levels of protein 4E-BP1 and its 

phosphorylated forms at Thr37/46 and Thr70 are not affected, which is consistent to the 

kinase assays showing no inhibitory activity against mTOR with MNKI-19 and MNKI-85 

(Figure 1). Similar effects were seen in CGP57380-treated cells but not in MNKI-85. 

However, little to no effect on the levels of p38 and ERK proteins and their phosphorylated 

forms was observed after treating MOLM-13 with 20 µM compounds for 24 h (Figure 2B).  

At 24 h, the complete abolition of p-eIF4ES209 by Mnk inhibitors gave rise to a reduction 

in the phosphorylation of 4E-BP1 at Thr37/46 (Figure 2C and Supplemental Figure 1) and 

Thr70 (Figure 2C), particularly at the latter in a dose-dependent manner, in MOLM-13 cells.  

 

MNKI-19 and MNKI-85 arrest cancer cells in the G1 phase of cell cycle via down-

regulating CDK4 and cyclin D3  

We next investigated whether the anti-proliferative activity of MNKI-19 and MNKI-85 

was a consequence of cell cycle effects. As shown in Figure 3A, treatment of MOLM-13 cells 

with MNKI-19 or MNKI-85 at 5 μM for 24 h resulted in the accumulation of G1 cells, which 

was accompanied by a loss in cell population at the G2/M phase. This is consistent with 

previous studies (Diab et al., 2014b; Zhang et al., 2008). The cell cycle effect of MNKI-19 

was found to behave in a dose- and time-dependent manner. Consistently, this was observed 

with MV4-11 cells after treatment with the compounds (Figure 3B). However, in the case of 

MNKI-85, there was no significant change in the cell cycle distribution observed with longer 

treatment time. Time-course Western blot analysis was conducted to study the levels of key 

proteins involved in cell cycle after treatment of MOLM-13 cells with compound inhibitors 

for 1 h and 24 h. Attempts were made to study the expression level of cyclin D1 in MOLM-

13 cells but the protein was too weak to be detected (data not shown), hence cyclin D3 was 
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pursued. In human somatic cells, the G1 to S phase transition is tightly regulated by the 

cyclin-D/CDK4/6 proteins, along with their downstream target, retinoblastoma (Rb) protein 

(Neganova and Lako, 2008). As shown in Figure 3C, no significant changes were detected in 

these cell cycle regulators at the early time-point (i.e. 1 h) (see also Supplemental Figure 2). 

However, 24 h incubation of MOLM-13 cells with Mnk inhibitors resulted in the suppression 

of cyclin D3 expression in a dose-dependent manner (Figure 3D). CDK4 was also down-

regulated by Mnk inhibitors at low concentration.  

To investigate whether the perturbation of cell cycle progression is a consequence of 

CDK4 activity, the phosphorylation of Rb at both CDK4-specific Thr826 (p-RbT826) site 

(Macdonald and Dick, 2012) was also measured. A decreased level of p-RbT826 was detected 

upon treatment of MOLM-13 cells with 20 µM of MNKI-19 or MNKI-85 (Figure 3D, 

Supplemental Figure 3), indicating the loss of CDK4 activity and restricting the G1 to S 

transition. This observation is further supported by kinase assays showing that both MNKI-19 

and MNKI-85 have no inhibitory effect on CDK4 kinase activity (Table 1), implying the 

decreased CDK4 protein expression is a consequence of the down-regulating Mnk/eIF4E-

mediated protein synthesis of cyclin D3. In contrast, little effect on CDK6 or CDK6-specific 

p-RbT821 levels was observed (Figure 3E, Supplemental Figure 4), supporting the relative 

importance of CDK4 over CDK6 in the cell cycle progression (Neganova and Lako, 2008).  

 

MNKI-19 and MNKI-85 induce apoptosis in FLT3-ITD-expressed AML cells 

The apoptotic mechanism of action by Mnk inhibitors was further examined using annexin 

V/propidium iodide (PI) staining. Exposure of MOLM-13 or MV4-11 cells to either MNKI-

19, MNKI-85 or CGP57380 at a concentration of 10 or 20 µM for 24 h caused 2-4-fold 

increase in apoptotic cells (annexin V+/PI- and annexin V+/PI+) when compared to untreated 

cells (Figure 4A-B). Consistent with the cell cycle profile, MNKI-19 induced significant 
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apoptosis in a dose- and time-dependent manner. While the proteins involved in the apoptosis 

mechanism, including Mcl-1, Bcl-2, PARP and caspase-3, were not affected in MOLM-13 

cells at the early time-point (i.e. 1 h) (Figure 4C), Western blot analysis revealed the down-

regulation of the anti-apoptotic protein Mcl-1 and/or an increase of PARP cleavage after 

exposure to 5 µM of MNKI-19, MNKI-85 or CGP57380 for 24 h (Figure 4D), indicating the 

apoptotic effect caused by the inhibition of Mnks. The levels of Bcl-2 remain unchanged 

(Figure 4E), which is in agreement with our previous results obtained using MV4-11 (Diab et 

al., 2014b).  

In conjunction with no aberration in full length caspase-3 protein levels (Figure 4E) and 

no detectable caspase-3/7 activity (Figure 4F), the data indicate that Mnk inhibitor-induced 

apoptosis in MOLM-13 and MV4-11 cells may be independent of caspases-3 and -7.  

 

Discussion 

Screening against a panel of 7 leukemia cell lines with various FLT3 mutational statuses 

revealed the selective Mnk inhibitors MNKI-19 and MNKI-85 are particularly effective in 

suppressing the growth of FLT3/ITD-expressing AML cells, including MOLM-13 and MV4-

11. PL-21 cells, in contrast, expressing both WT and mutated alleles (Quentmeier et al., 

2003), were less sensitive to these compounds. However, it remains debatable that PL-21 

cells could only express the WT allele (Yokota et al., 1997). Nevertheless, the differences in 

the sensitivity between the cell lines could be attributed to the different subtypes, which are 

classified based on the morphology and immunohistochemistry of myeloid neoplasms 

(Bennett et al., 1985). Both MOLM-13 and MV4-11 are acute monoblastic leukemia cells 

(M5/M5a) (Quentmeier et al., 2003) that carry the respective t(9,11) and t(4,11) chromosomal 

translocations, resulting in the fusion proteins MLL-AF9 and MLL-AF4, respectively 
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(Andersson et al., 2005; Matsuo et al., 1997). Of note, these subtypes of AML are correlated 

with aberrant up-regulation of eIF4E (Topisirovic et al., 2003), which is absent in the less 

mature promyelocytic cells (M3; PL-21 cells) (Quentmeier et al., 2003). As a comparator, 

THP-1 cells with the t(9,11) chromosomal translocation and no detectable FLT3-ITD 

expression, exhibited negligible sensitivity to MNKI-19 and MNKI-85 (> 12-fold). Similarly, 

HL-60, U937 and K562, which do not express ITD mutations, have no cytotoxic effects when 

treated with the compounds for up to 3 days. These results are in agreement with a previous 

study, in which inhibiting 50% of cell growth in K562, U937 and MM6 cell lines after 5-day 

treatment also required > 10 µM of cercosporamide (Altman et al., 2013). CGP57380, on the 

other hand, is not particularly selective against the ITD-positive cells, indicating an 

alternative mechanism underlying the growth inhibitory effects. When considered together, 

concurrently activated upstream signaling pathways of Mnks with overexpressed eIF4E 

levels as characterized by the combined FLT3-ITD mutations and M5 subtypes, may serve as 

the right platform for investigation of the anti-leukemic effects of Mnk-specific inhibitors.  

Western blot analysis further confirmed the role of MNKI-19 and MNKI-85 as potent Mnk 

inhibitors, as evidenced by the blockage of eIF4ES209 phosphorylation. As Mnks are 

important convergence nodes of the MAPK pathways (Chappell et al., 2011; Faivre et al., 

2006), the expression of the upstream effectors, p38 and ERK, was also investigated. 

Interestingly, an early transient phosphorylation of ERK and p38 was found to be up-

regulated upon incubation with MNKI-19 for 1 h, without affecting their total levels. Similar 

effects were seen in CGP57380-treated cells but not in MNKI-85. This could be attributed to 

the induction of negative-feedback mechanism upon Mnk1 inhibition as both ERK and p38 

are substrates for Mnk1 (Waskiewicz et al., 1997). Such an observation is consistent to a 

study done by Zhang et al. who has reported that CGP57380-mediated ERK and Mnk 

activation was determined at early time-point (i.e. 30 min) and followed by a second late 
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phosphorylation starting at 24 h in the Bcr-Abl-dependent cells (Zhang et al., 2008). Little to 

no effect on the levels of ERK and p38 proteins and their phosphorylated forms was observed 

after treating MOLM-13 with 20 µM compounds for 24 h, supporting that the sustained 

phosphorylation at late time-point is dependent on the presence of Bcr-Abl and signifying the 

specific effect of our Mnk inhibitors on Mnk/eIF4E. The compounds were also evaluated 

against a panel of upstream activating kinases, including B-Raf, ERK, p38α, PI3K, Akt1 and 

mTOR, using biochemical assays, and showed no significant kinase inhibitory activity, 

supporting selectivity of the compounds.  

Interestingly, down-regulations of the levels of phosphorylated 4E-BP1 at Thr37/46 and 

Thr70 (the two most priming phosphorylation events for the upstream affector mTOR) 

(Gingras et al., 2001) were detected in MOLM-13 cells treated with either MNKI-19 or 

MNKI-85. Binding of eIF4E to 4E-BP1 is regulated by hierarchical multisite phosphorylation 

and the role of the phosphorylation site at Thr37/46 on eIF4E binding remains controversial: 

several studies claimed that the phosphorylation of Thr37/46 has little effect on the binding of 

eIF4E (Gingras et al., 1999; Karim et al., 2001), while the other group showed that a 

significant reduction in eIF4E-binding affinity was induced by such a phosphorylation event 

(Burnett et al., 1998). However, mutations of these residues and/or Thr70 to alanine, have 

significantly led to the dissociation of eIF4E from 4E-BP1 (Gingras et al., 2001), confirming 

the important role of these phosphorylation sites on the eIF4E/4E-BP1 equilibrium.  

In light of these findings, it is speculated that a negative-feedback regulatory mechanism 

involving the equilibrium shift towards the eIF4E/4E-BP1 complex could be triggered in the 

compound-treated cells. Translation processes involve the assembly of several eIF4 

translational factors, including the eIF4E and activated Mnks to form the eIF4F complex 

(Hou et al., 2012). Inhibition of Mnks, especially Mnk2, may increase the levels of eIF4E in 

the cells as the formation of eIF4F complex has been disrupted. As the Akt/mTOR pathway is 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 4, 2015 as DOI: 10.1124/mol.115.098012

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #98012 

21 
 

overly activated in FLT3-ITD MOLM-13 cells (Hayakawa et al., 2000), it is suspected that 

the up-regulated eIF4E levels have initiated the negative-feedback mechanism of Akt/mTOR 

to dephosphorylate 4E-BP1. Upon hypo-phosphorylation, 4E-BP1 interacts strongly with 

eIF4E (Khaleghpour et al., 1999). While our compounds were inactive to the upstream 

kinases in the Akt/mTOR pathway, particularly mTOR, it is believed that the 

dephosphorylation events were induced upon Mnk inhibition. 

Complementary to this, a recent study used CGP57380 to investigate the effect of eIF4E 

phosphorylation on translation initiation, showing that the amount of eIF4G in the eIF4F 

complex was decreased when treated with the compound (Li et al., 2010). This implies that 

inhibiting Mnks may reduce the eIF4F assembly. Another recent study also suggested that the 

dissociation of 4E-BP1 is highly dependent on the Mnk1-mediated eIF4E phosphorylation 

(Das et al., 2013). The dephosphorylation of 4E-BP1 by MNKI-19 could be also due to the 

Pim-1 inhibition as shown in the kinase assay. The 4E-BP1 has recently been identified as a 

target of Pim-1 in the FLT3-ITD-driven activation of STAT-5. Pim-1 inhibitors have 

significantly reduced the p-4E-BP1T37/46 in the FLT3-ITD AML cells (Chen et al., 2011). 

However, more studies on the binding affinity of compounds MNKI-19 and MNKI-85 for the 

relevant proteins, such as eIF4G and 4E-BP1, are required to unveil the underlying 

mechanism.  

The oncogenic role of eIF4E has been reported in the cell cycle progression (Diab et al., 

2014a). D-type cyclins, as G1 progression factors, play a vital role in enhancing the G1 to S 

transition through binding to the CDK4/6 (Sherr, 1995). Elevated eIF4E levels have been 

shown to enhance the translational levels of a wide array of malignancy-related mRNAs 

involved in the regulation of cell senescence, proliferation and apoptosis, including cyclin D1 

and Mcl-1 (Zimmer et al., 2000), whereas the oncogenic functions of eIF4E are closely 

linked to its phosphorylation by Mnks (Diab et al., 2014a; Ueda et al., 2010). Consistent with 
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previous studies (Diab et al., 2014b; Teo et al., 2015; Zhang et al., 2008), Mnk inhibitors in 

the current study triggered a cell cycle arrest in both MOLM-13 and MV4-11 cells by 

disrupting the transition of G1 to S phase. Such an effect is likely to be the result of decreased 

expression of the key cell cycle regulators, including CDK4 and cyclin D3, which further 

hampered the phosphorylation of Rb at the CDK4-specific Thr826 site (Macdonald and Dick, 

2012). This is further supported when kinase assays showed both MNKI-19 and MNKI-85 

have no effect on CDK4 kinase activity (Ki > 10 μM). Previous studies also demonstrated the 

importance of cyclin D3 at the translational level over other D-type cyclins (Prabhu et al., 

2007; Zhang et al., 2008).  

Collectively, these results indicate that the effect of eIF4E-mediated cell cycle arrest is 

through phosphorylation by Mnks. While MNKI-19 increased the G1 cell accumulation in a 

time-dependent manner, MNKI-85 failed to show the similar cell cycle effect (Figure 3A and 

B), suggesting that targeting a combination of Mnk1 and Mnk2 may be more effective than 

one of the isoforms alone in preventing cell cycle progression. Our observation agrees with a 

recent study of a series of Mnk degrading agents which showed to induce a G1/G0 cell cycle 

arrest, along with the down-regulation of cyclin D3 and CDK4 in MDA-MB-231 cells 

(Ramalingam et al., 2014). 

The apoptotic effect of Mnk inhibitors is likely mediated through the 4E-BP1/eIF4E axis. 

Several lines of evidence have indicated the positive correlation between the suppression of 

eIF4E by binding to 4E-BP1 and induction of apoptosis (Clemens, 2001; Yellen et al., 2013). 

To date, Mnk1 and Mnk2 are the only identified kinases that phosphorylate eIF4E, and 

phosphorylation of eIF4E modulates cap-dependent translation. In addition, eIF4E 

phosphorylation can be down-regulated by 4E-BP1 binding (Li et al., 2010), this has, hence, 

raised the possibility that inhibiting Mnks triggers the dephosphorylation of 4E-BP1 and 

results in the reduction of cap-dependent protein synthesis, including Mcl-1. In contrast, the 
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significant induction of G1 arrest and apoptosis by MNKI-19 could also be an additive effect 

of Pim-1 inhibition. Previsous study has shown that Pim-1 inhibitors reduced Mcl-1 and 

induced apoptosis in FLT3-ITD AML cells (Chen et al., 2011). 

We have shown that inhibition of eIF4E phosphorylation with Mnk inhibitors is associated 

with an increase in cell death. An increase cleavage of PARP and a marked suppression of 

Mcl-1 levels were observed. Lack of procaspase-3 processing and caspase-3/7 activation 

suggest that the apoptotic cell death by Mnk inhibitors may be via a caspase-independent 

mechanism. In contrast, a recent study demonstrated a caspase-dependent apoptosis was 

induced with Mnk degrading agents in breast cancer cell lines (Ramalingam et al., 2014). 

Perhaps, modes of action are contingent on compounds treated and cell lines tested. However, 

it is noteworthy that a combined use of Mnk1 and Mnk2, as represented by MNKI-19, gives 

rise to a more pronounced apoptosis than inhibiting Mnk2 alone (MNKI-85). 
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Legends for Figure  

 

Figure 1. Selectivity of MNKI-19 and MNKI-85 against a panel of kinases. The remaining 

percentages of kinase activity upon treatment with each compound at 5 μM concentration are 

shown, unless otherwise specified. Both Mnk1 and Mnk2 are tested by the in-house IMAP 

assays at 1 μM of compound inhibitors. 15 μM within Km of ATP for each kinase is used in 

the assays. Data represent one repeat and kinases that show < 50% in kinase activity upon 

compounds treatment are further evaluated with dose-response analysis to obtain their 

apparent inhibition constants (Ki) as shown in Table 1. 

 

Figure 2. Western blot analysis of key proteins involved in the Ras/Raf/MAPK and 

PI3K/Akt/mTOR pathways in MOLM-13 cells treated with CGP57380, MNKI-19 and 

MNKI-85 for (A) 1 h and (B-C) 24 h. In A and C, compounds are tested at 5 µM and/or 10 

µM and 20 µM whereas in B, compounds are used at 20 µM. Antibodies used and the protein 

molecular weight marker are indicated on the left and right sides, respectively, of each panel. 

DMSO diluent is used as a control and β-actin is used as an internal loading control. A 

representative blot is selected from at least two independent repeats.  

 

Figure 3. Cell cycle analysis of (A) MOLM-13 and (B) MV4-11 cells after treatment with 5, 

10 or 20 µM of MNKI-19, MNKI-85 or CGP57380 for 24 h and 48 h. Data represent the 

mean ± SD of three independent repeats. *p < 0.05 when compared to control. Western blot 
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analysis of key proteins involved in cell cycle upon treatment with Mnk inhibitors in MOLM-

13 cells for (C) 1 h and (D-E) 24 h. In C and D, compounds are tested at 5 µM and/or 10 µM 

and 20 µM whereas in E, compounds are used at 20 µM. Antibodies used and the protein 

molecular weight marker are indicated on the left and right sides, respectively, of each panel. 

DMSO diluent is used as a control and β-actin is used as an internal loading control. A 

representative blot is selected from at least two independent repeats.  

 

Figure 4. Induction of apoptosis by MNKI-19, MNKI-85 or CGP57380 in (A) MOLM-13 

and (B) MV4-11 cells. Cells are exposed at 5, 10 and 20 µM of each compound for 24 and 48 

h, and examined with Annexin V/PI staining. The percentage of cells undergoing apoptosis is 

represented by the sum of early and late apoptosis. Data represent the mean ± SD of three 

independent repeats. *p < 0.05 when compared to control. Western blot analysis of key 

proteins involved in apoptosis upon treatment with Mnk inhibitors in MOLM-13 cells for (C) 

1 h and (D-E) 24 h. In C and D, compounds are tested at 5 µM and/or 10 µM and 20 µM 

whereas in E, compounds are used at 20 µM. Antibodies used and the protein molecular 

weight marker are indicated on the left and right sides, respectively, of each panel. DMSO 

diluent is used as a control and β-actin is used as an internal loading control. A representative 

blot is selected from at least two independent repeats. (F) Quantification of caspase-3/7 

activity in MOLM-13 (left) and MV4-11 (right) cells upon treatment with 5 µM, 10 µM and 

20 µM of MNKI-19, MNKI-85 or CGP57380 for 48 h. 
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Tables 

 

Table 1. Chemical structure and kinase inhibitory activity of Mnk inhibitors. 

 

 

 

 

Compound 

  
Ki (μM)a 

Mnk1 Mnk2 CDK2A CDK9T1  CDK4D1 FLT3 Pim

CGP57380 1.010 ± 0.098 0.877 ± 0.212 > 10 > 10 > 10 ND ND

MNKI-19 0.186 ± 0.011 0.068 ± 0.009 > 10 > 10 > 10  > 10 2.3

MNKI-85 > 10 0.031 ± 0.012 > 10 > 10 > 10 > 10 > 1

a The ATP concentrations used in these assays were within 15 μM of Km. Apparent inhibition 

constants (Ki) were calculated from IC50 values and the appropriate Km (ATP) values for each 

kinase using the Cheng-Prusoff equation. Data shown are the mean values derived from two 

replicates ± SD. ND, not determined. 

 

 

im-1 

ND 
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Table 2. Anti-proliferative activity of CGP57380, MNKI-19 and MNKI-85 in leukemia cell 

lines with various FLT3 mutational statuses and normal fibroblast cells by 72 h resazurin and 

MTT assays, respectively.  

a Data shown are the mean values derived from at least two replicates ± SD. b GI50 values 

were determined by 72 h MTT assay. FLT3, FMS-like tyrosine kinase-3; ITD, internal 

tandem duplications; WT, wild-type; FAB, French-American-British classification system. 

 

 

 

Cell line FLT3 status 
FAB 

subtype 

72 h GI50 (µM)a ± SD 

CGP57380 MNKI-19 MNKI-85 

MOLM-13 ITD M5a 8.81 ± 0.80 5.65 ± 0.84 7.19 ± 0.08 

MV4-11 ITD M5 6.89 ± 0.16 7.30 ± 0.75 7.44 ± 0.77 

PL-21 ITD/WT M3 9.39 ± 0.11 57.17 ± 6.74 > 100 

HL-60 WT M2 16.83 ± 1.98 69.18 ± 6.15 > 100 

THP-1 WT M5 38.97 ± 2.98 > 100 94.06 ± 8.40 

U937 WT M4/5 9.40 ± 0.60 33.59 ± 4.21 > 100 

K562 WT (CML) 34.13 ± 1.82 93.16 ± 9.68 > 100 

WI-38b Normal fibroblast cells 62.37 ± 0.24 98.63 ± 1.54 43.40 ± 5.05 
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