Assessment of the molecular mechanisms of action of novel 4-phenylpyridine-2-one and 6-phenylpyrimidin-4-one allosteric modulators at the M_{1} muscarinic acetylcholine receptors.

Emma T van der Westhuizen, Arthur Spathis, Elham Khajehali, Manuela Jörg, Shailesh N Mistry, Ben Capuano, Andrew B Tobin, Patrick M Sexton, Peter J Scammells, Celine Valant and Arthur Christopoulos

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia (ETvdW, AS, EK, PMS, CV, AC) Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia (MJ, SNM, BC, PS)

Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom (SNM)

Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom (ABT)

2. Running title page:

a) Running title: Characterization of novel $\mathrm{M}_{1} \mathrm{mAChR}$ allosteric modulators
b) Corresponding author: Prof Arthur Christopoulos

Drug Discovery Biology
Monash Institute for Pharmaceutical Sciences
381 Royal Parade, Parkville 3052 VIC
AUSTRALIA
Tel: +61 399039067
Email: Arthur.Christopoulos@monash.edu
c) Manuscript information:

Number of text pages: 41
Number of tables: 3
Number of figures: 9
Number of references: 46
Number of words in abstract: 243
Number of words in introduction: 737
Number of words in discussion: 1269

d) Non-standard abbreviations

ACh, acetylcholine; BQCA, benzyl quinolone carboxylic acid; CHO, Chinese hamser ovary; CNS, central nervous system; DMEM, Dulbecco modified eagle medium; ERK1/2, extracellular signal-regulated kinases $1 / 2$; FBS, fetal bovine serum; GPCR, G proteincoupled receptor; HTRF. Homogenous time resolved FRET; IP $_{1}$ inositol monophosphate; mAChR, muscarinic acetylcholine receptor; MIPS1674, 4-(2-((4-(1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one; MIPS1745, 1-(2-hydroxycyclohexyl)-4-(2-((6-(1-methyl-1H-pyrazol-4-yl)-pyridin-3-yl)methoxy)phenyl)pyridin-2(1H)-one; MIPS1780, 3-(2-hydroxycyclohexyl)-6-(2-((4-(1-methyl-1H-pyrazol-4-yl)- benzyl)oxy)phenyl)pyrimidin-4(3H)-one; MWC, Monod-WymanChangeux; NAL, neutral allosteric ligand; NAM, negative allosteric modulator; Oxo-M, oxotremorine-M; PAM, positive allosteric modulator; PBS, phosphate-buffered saline; PEI, polyethyleneimine; Rluc, Renilla luciferase; SF, serum-free; Xan, xanomeline; YFP, yellow fluorescent protein

Abstract

Positive allosteric modulators (PAMs) that target the M_{1} muscarinic acetylcholine (ACh) receptor $\left(\mathrm{M}_{1} \mathrm{mAChR}\right)$ are potential treatments for cognitive deficits in conditions such as Alzheimer's disease and schizophrenia. We recently reported novel 4-phenylpyridine-2-one and 6-phenylpyrimidin-4-one $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs with the potential to display different modes of positive allosteric modulation and/or agonism (Mistry et al., 2016), but their molecular mechanisms of action remain undetermined. The current study compared the pharmacology of three such novel PAMs with the prototypical first-generation PAM, BQCA, in a recombinant Chinese hamster ovary (CHO) cell line stably expressing the human M_{1} $m A C h R$. Interactions between the orthosteric agonists and the novel PAMs or BQCA suggested their allosteric effects were solely governed by modulation of agonist affinity. The greatest degree of positive co-operativity was observed with higher efficacy agonists, whereas minimal potentiation was observed when the modulators were tested against the lower efficacy agonist, xanomeline. Each PAM was investigated for its effects on the endogenous agonist, ACh , on three different signalling pathways, (ERK1/2 phosphorylation, IP_{1} accumulation and β-arrestin- 2 recruitment), revealing that the allosteric potentiation generally tracked with the efficiency of stimulus-response coupling and that there was little pathway bias in the allosteric effects. Thus, despite the identification of novel allosteric scaffolds targeting the $\mathrm{M}_{1} \mathrm{mAChR}$, the molecular mechanism of action of these compounds is largely consistent with a model of allostery previously described for BQCA, suggesting that this may be a more generalized mechanism for $\mathrm{M}_{1} \mathrm{mAChR}$ PAM effects than previously appreciated.

Introduction

The muscarinic acetylcholine receptors (mAChRs) belong to the rhodopsin-like (Class A) family of G protein-coupled receptors (GPCRs). Five distinct mAChR subtypes (denoted M_{1-} M_{5}) exist and exhibit a widespread distribution throughout the central nervous system (CNS) and peripheral organs (Caulfield 1993; Nathanson 2008; Kruse et al., 2014). The $\mathrm{M}_{1}, \mathrm{M}_{3}$ and $\mathrm{M}_{5} \mathrm{mAChRs}$ preferentially couple to $\mathrm{G}_{\mathrm{q} / 11}$ proteins, whereas the M_{2} and $\mathrm{M}_{4} \mathrm{mAChRs}$ preferentially couple to $\mathrm{G}_{\mathrm{i} / \mathrm{o}}$ proteins. However, an ever-growing array of additional signalling pathways, including those not necessarily mediated by G proteins, has also been linked to mAChR activation (Lanzafame et al., 2003).

The $\mathrm{M}_{1} \mathrm{mAChR}$ is highly expressed in the cerebral cortex, hippocampus, striatum and thalamus (Cortés et al., 1986; 1987; Elhert and Tran, 1990); regions vital for memory, cognitive and locomotor functions. Therefore, the $\mathrm{M}_{1} \mathrm{mAChR}$ has long been implicated in learning and memory, and remains a potential target for the treatment of Alzheimer's disease and schizophrenia (Caulfield 1993; Langmead et al., 2008). A role for the $\mathrm{M}_{1} \mathrm{mAChR}$ in treating the cognitive impairment in both of these diseases is further supported by the decrease in $\mathrm{M}_{1} \mathrm{mAChR}$ expression in the pre-frontal cortex in brains from schizophrenic patients (Melancon et al., 2013; Conn et al., 2009). Improved cognition, learning and memory were observed in preclinical studies using the $\mathrm{M}_{1} / \mathrm{M}_{4}$-preferring orthosteric agonist, xanomeline (Xan), which were attenuated in $\mathrm{M}_{1} \mathrm{mAChR}$ knockout (KO) mice (Bymaster et al., 2003), whereas memory deficits have been observed upon administration of mAChR antagonists or M_{1} mAChR KO in mice (Sauerberg et al., 1992; Wess 2004; Davie et al., 2014). Importantly, Xan demonstrated clinical efficacy, particularly in treating psychosis and cognitive decline in clinical trials of Alzheimer's disease and schizophrenia. Despite this,

Xan was not pursued further due to unacceptable off-target effects, largely attributed to a lack of mAChR subtype selectivity (Bodick et al., 1997; Shekar et al., 2008).

Encouragingly, the mAChRs possess spatially distinct allosteric sites, which can be selectively targeted (Kruse et al., 2013; 2014). Recently, benzyl quinolone carboxylic acid (BQCA) was described as the first highly selective positive allosteric modulator (PAM) of the M_{1} mAChR, with preclinical efficacy in animal models of cognition (Ma et al., 2009) and has served as a major impetus for new discovery efforts (Kruse et al., 2014). However, significant challenges and unanswered questions remain regarding the optimal type of allosteric ligand for successful progression through preclinical studies to man. For instance, allosteric modulators can display complex behaviours such as "probe dependence", where the magnitude and direction of an allosteric effect for the modulator can change depending on which orthosteric ligand is used as a probe for receptor function (Kenakin 2005). Another example is "biased modulation"; the ability of different allosteric ligands to engender unique receptor conformations, whereby certain signalling pathways are differentially modulated relative to others (Kenakin and Christopoulos 2013; Christopoulos 2014).

The simplest mechanism that explains allostery is the classic Monod-Wyman-Changeux (MWC) model (Monod et al., 1965), which predicts that probe dependence arises as a function of the efficacy of the orthosteric ligand, and that biased modulation cannot occur without the existence of additional active states (Canals et al., 2011; Changeux and Christopoulos 2016). A characterization of BQCA at the $\mathrm{M}_{1} \mathrm{mAChR}$ revealed that BQCA indeed behaves in a manner generally consistent with a two-state MWC mechanism (Canals et al., 2012; Ehlert and Griffin, 2014). However, this is not always the case with other mAChR modulators (e.g. Valant et al., 2012), and thus detailed molecular pharmacological
characterisation is a necessary first step in understanding the mechanism of action of any new allosteric ligands. Although BQCA was a major breakthrough in terms of proof of concept, it possesses a very low affinity for the receptor, and additional liabilities that precluded it from further clinical development (Canals et al., 2011; Davoren et al., 2016). Thus, there remains an ongoing need for the discovery of new $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs.

Our laboratory recently identified a series of novel $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs with 4-phenylpyridine-2-one and 6-phenylpyrimidin-one scaffolds that are distinct from BQCA (Mistry et al., 2016). However, a detailed mechanistic evaluation of their pharmacological properties has not been undertaken. Thus, the aim of this study was to characterise exemplar molecules from this series of PAMs and compare their behaviours to BQCA, particularly with regards to mechanisms underlying probe dependence and the potential for biased modulation. We found that, despite possessing a chemically distinct scaffold, the novel PAMs generally behave in a manner akin to that of BQCA.

Materials and Methods

Materials: Dulbecco's Modified Eagle Medium (DMEM) and FlpIn Chinese hamster ovary (CHO) cells were purchased from Invitrogen (Carlsbad, CA, USA). Fetal bovine serum was purchased from ThermoTrace (Melbourne, VIC, Australia). The IP-One assay kit and reagents were purchased from Cisbio (Codolet, France). $\left[{ }^{3} \mathrm{H}\right]-\mathrm{NMS}$ ($70.0 \mathrm{Ci} / \mathrm{mmol}$) and AlphaScreen ${ }^{\text {TM }}$ protein A IgG beads were purchased from Perkin Elmer Life and Analytical Sciences (Waltham, MA, USA). The Sure-Fire ${ }^{\text {TM }}$ cellular ERK1/2 assay kits were a generous gift from TGR BioSciences (Adelaide, Australia). Polyethyleneimine (PEI, molecular mass, 25 kDa) was from Polysciences (Warrington, PA). 1-(4-Methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (benzyl quinolone carboxylic acid; BQCA), 4-(2-((4-(1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (MIPS1674), 1-(2-hydroxycyclohexyl)-4-(2-((6-(1-methyl-1H-pyrazol-4-yl)-pyridin-3-yl)methoxy)phenyl)pyridin-2(1H)-one (MIPS1745), and 3-(2-hydroxycyclohexyl)-6-(2-((4-(1-methyl-1H-pyrazol-4-yl)- benzyl)oxy)phenyl)pyrimidin-4(3H)-one (MIPS1780) were synthesized in house (Mistry et al. 2016). Xanomeline was a generous gift from Dr. Christian Felder (Eli Lilly, USA). Coelenterazine h was purchased from Nanolight Technologies (Pinetop, AZ, USA). The YFP- β-arrestin- 2 construct was a gift from Dr. Marc Caron (Duke University). The M_{1}-Rluc8 constructs were generated in-house as described previously (Yeatman et al. 2014). All other chemicals were purchased from Sigma-Aldrich (St Louis, MO).

Cell culture: FlpInCHO cells stably expressing the wild type human muscarinic acetylcholine M_{1} receptor ($\mathrm{h} \mathrm{M}_{1} \mathrm{mAChR} ; 37031 \pm 3397$ sites/cell) (Mistry et al., 2016) were grown in DMEM (supplemented with 5\% FBS), and were used for the IP_{1} accumulation and ERK1/2 signaling assays. For the β-arrestin-2 recruitment assays, 3×10^{6} parental FlpInCHO
cells were transiently transfected with $0.6 \mu \mathrm{~g}$ of M_{1}-Renilla luciferase (Rluc)-8, $1.8 \mu \mathrm{~g}$ of YFP- β-arrestin- 2 and $3.6 \mu \mathrm{~g}$ of empty pcDNA vector in a 100 mM dish, using linear polyethyleneimine (PEI:DNA ratio 6:1) diluted in NaCl (150 mM). DNA:PEI complexes were formed by incubation at room temperature for 15 min , then added to the cells and incubated at $37^{\circ} \mathrm{C}$ for 24 h . Transfected cells were replated into white CulturPlates (Perkin Elmer) and incubated for a further 24 h prior to use in signalling assays.

IP P_{1} accumulation assay: The IP-one assay kit (Cisbio, France) was used for the quantitative measurement of myo-inositol 1 phosphate (IP_{1}). 10,000 cells/well were seeded into 96 well plates and incubated overnight at $37^{\circ} \mathrm{C}$. The following day, cells were pre-incubated with IP_{1} stimulation buffer (10 mM HEPES, $1 \mathrm{mM} \mathrm{CaCl} 2,0.5 \mathrm{mM} \mathrm{MgCl}_{2}, 4.2 \mathrm{mM} \mathrm{KCl}, 146 \mathrm{mM} \mathrm{NaCl}$, 5.5 mM D-glucose, $50 \mathrm{mM} \mathrm{LiCl}, \mathrm{pH} 7.4$) for 1 h at $37^{\circ} \mathrm{C}$. Orthosteric and allosteric ligands were added and incubated for a further 1 h at $37^{\circ} \mathrm{C}$. Cells were lysed in lysis buffer $(50 \mathrm{mM}$ HEPES-NaOH pH 7.0, $15 \mathrm{mM} \mathrm{KF}, 1.5 \% ~(\mathrm{v} / \mathrm{v})$ Triton-X-100) and $14 \mu \mathrm{~L}$ of cell lysates were transferred into 384-well Optiplates (PerkinELmer Life Sciences). An IP ${ }_{1}$ standard curve was prepared and added to the Optiplates in parallel. Homogenous time resolved FRET (HTRF) reagents (cryptate-labeled anti-IP ${ }_{1}$ antibody, the d_{2}-labeled IP_{1} analogue; diluted 1:20 in lysis buffer) were added and plates were incubated for 1 h at $37^{\circ} \mathrm{C}$. Samples were excited at 340nm and emission was captured at 590 and 665 nm using the Envision multi-label plate reader (PerkinElmer Life Sciences). IP_{1} concentrations were interpolated from the standard curve using HTRF ratio values, and responses were normalized to the maximum response elucidated by ACh.

Receptor alkylation studies in $I P_{1}$ accumulation experiments: 10,000 cells/well were seeded into poly-D-lysine coated 96 -well plates. Following the initial 1 h incubation in IP_{1}
stimulation buffer, cells were pre-treated for 30 min at $37^{\circ} \mathrm{C}$ with varying concentrations of the irreversible orthosteric-site alkylating agent, phenoxybenzamine (PBZ) or vehicle control, followed by three washes with PBS. The IP_{1} assay was then performed as described above.

ERK1/2 phosphorylation: The AlphaScreen-based SureFire kit was used for the quantitative measurement of phosphorylated ERK1/2 (pERK1/2). 25,000 cells/well were plated into 96well plates and incubated overnight at $37^{\circ} \mathrm{C}$. The following day, the growth medium was replaced with serum-free (SF) medium for 6 h at $37^{\circ} \mathrm{C}$, then the cells were stimulated for 5 min (peak response from time course, data not shown) with various concentrations of ACh or FBS ($10 \% \mathrm{v} / \mathrm{v}$) with or without different concentrations of allosteric ligands at $37^{\circ} \mathrm{C}$. Cells were lysed in $100 \mu \mathrm{~L} /$ well SureFire lysis buffer at $-20^{\circ} \mathrm{C}$ overnight. Plates were thawed at room temperature and $10 \mu \mathrm{~L}$ of the cell lysates were transferred to a 384 -well Optiplate. In reduced lighting conditions, $8.5 \mu \mathrm{l}$ of detection buffer (reaction buffer/activation buffer/acceptor beads/donor beads; 60:10:0.3:0.3) was added and plates were incubated for 1h at $37^{\circ} \mathrm{C}$. Fluorescence signal was measured using the Envision multilabel plate reader with AlphaScreen settings. Data were expressed as a percentage of the pERK1/2 mediated by 10% FBS or maximum ACh response.
β-arrestin- 2 recruitment assays: FlpInCHO cells were transiently transfected with M_{1}-Rluc8 and YFP- β-arrestin- 2 as described in cell culture section above. 24 h later, they were replated into white 96 well Optiplates. Cells were equilibrated in Hanks' balanced salt solution for 1h at $37^{\circ} \mathrm{C}$. Coelenterazine h (final concentration $5 \mu \mathrm{M}$), was added to each well, then 5 min later various concentrations of ligands were added. Luminescence and fluorescence readings were captured 10 min after coelenterazine h addition using the LUMIstar Omega (BMG LabTech, Offenburg, Germany) that allows for the sequential integration of the signals detected at 475
± 30 and $535 \pm 30 \mathrm{~nm}$ using filters with the appropriate band pass. Data are presented as BRET ratio, calculated as the ratio of YFP to Rluc8 signals and were normalized to the maximum possible BRET ratio elucidated by ACh.

Data analysis: All data analysis was performed using GraphPad Prism v.7.02. Concentration response curves were fitted using a three parameter logistic non-linear regression model to derive potency $\left(\mathrm{pEC}_{50}\right)$ and efficacy $\left(\mathrm{E}_{\text {max }}\right)$ parameters.
IP_{1} alkylation experiments were globally fitted to an operational model of agonism (Black and Leff, 1983) to determine orthosteric agonist equilibrium dissociation constant (functional affinity; K_{A}) and the agonist operational efficacy (τ), which takes both receptor density and stimulus-response coupling efficiency into account:

$$
\begin{equation*}
E=\text { basal }+\frac{\left(E_{m}-\text { basal }\right) \tau^{n}[A]^{n}}{\tau^{n}[A]^{n}+\left([A]+K_{A}\right)^{n}} \tag{Eqn1}
\end{equation*}
$$

In this model, basal is the response in the presence of vehicle, E_{m} is the maximum possible pathway response, [A] is the agonist concentration and n represents the slope of transducer function that links occupancy to response.

Concentration-response curves for the functional interactions between orthosteric and allosteric ligands were globally fitted to the following simplified operational model of allostery and agonism (Aurelio et al., 2009):

$$
\begin{equation*}
E=\text { basal }+\frac{\left(E_{m}-\text { basal }\right)\left([A]\left(K_{B}+\alpha \beta[B]+\tau_{B}[B]\left[E C_{50}\right]\right)^{n}\right.}{\left[E C_{50}\right]^{n}\left(K_{B}+[B]\right)^{n}+\left([A]\left(K_{B}+\alpha \beta[B]\right)+\tau_{B}[B]\left[E C_{50}\right]\right)^{n}} \tag{Eqn2}
\end{equation*}
$$

Where basal is the response in the presence of vehicle, [B] is the concentration of allosteric ligand and K_{B} represents its equilibrium dissociation constants. τ_{B} represents an operational measure of allosteric ligand efficacy, α denotes the binding cooperativity between orthosteric
and allosteric ligand, whereas β denotes a scaling factor that quantifies the allosteric effect of the modulator on orthosteric ligand efficacy. This model assumes that all orthosteric ligands are either full agonists at the receptor on both the absence/presence of modulator and/or there is no efficacy modulation (i.e., $\beta=1$). As shown in the Results, one or both of these assumptions were met with the various orthosteric ligands used, and thus the β parameter was constrained to 1 . All other parameters are as defined in equation 1 .

Also as shown in the Results, the ERK1/2 responses at the $\mathrm{M}_{1} \mathrm{mAChR}$ were bell-shaped. For the purposes of fitting the allosteric operational model to the data, the points defining the decreasing phases of the curves (i.e., those beyond $10 \mu \mathrm{M}$ of agonist) were removed from each curve to allow convergence of the allosteric operational model (Eqn 2).

All affinity, potency and cooperativity values were estimated as logarithms (Christopoulos 1998) and statistical comparisons between values were by one-way analysis of variance with either a Neuman-Kewls or Dunnett's multiple comparison test. A value of $p<0.05$ was considered statistically significant.

Results:

Novel 4-phenylpyridin-2-one and 6-phenylpyrimidin-4-one based compounds are selective for the $M_{1} m A C h R$ over other $m A C h R$ subtypes.

Recent work from our laboratory identified a novel series of 4-phenylpyridin-2-one and 6-phenylpyrimidin-4-one $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs (Figure 1A) that represent a different chemical scaffold to BQCA and related analogues (Mistry et al., 2016). When assessed for effects on the IP_{1} signalling pathway, our preliminary pharmacological characterization indicated that MIPS 1674 was an allosteric agonist with minimal PAM activity against ACh, MIPS1745 was a "pure" PAM of ACh with no direct allosteric agonism, whereas MIPS1780 behaved as a mixed PAM-agonist in modulating ACh function (akin to responses observed with BQCA). Thus, the fact that these three PAMs potentially exhibited three different "allosteric phenotypes" (Mistry et al., 2016) formed the basis for selecting them for further pharmacological evaluation. These compounds were initially tested to ensure they were selective for the $\mathrm{M}_{1} \mathrm{mAChR}$ over other mAChR subtypes using an ERK1/2 phosphorylation assay. Figure 1B-C shows that all PAMs modulated ACh activity at the $\mathrm{M}_{1} \mathrm{mAChR}$, but no modulation of ACh-mediated ERK $1 / 2$ responses were observed for $\mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, or M_{5} mAChR subtypes with MIPS1674, MIPS1745, MIPS1780 or BQCA (at a concentration higher than that needed to see PAM effects at the $\mathrm{M}_{1} \mathrm{mAChR}$), confirming that these modulators were selective for the $\mathrm{M}_{1} \mathrm{mAChR}$. It was also noted that ACh displayed a bellshaped concentration-response relationship for mediating ERK1/2-phosphorylation at the M_{1} mAChR, both in the absence or presence of modulator (Figure 1B). Although the mechanism underlying this effect is unknown, it is not due to desensitization or a change in the time to peak ACh effect at high concentrations, based on control time course experiments (not shown).

Determination of $M_{1} m A C h R$ orthosteric agonist functional affinities and intrinsic efficacies in stimulating $I P_{1}$ accumulation.

The next aim of this study was to investigate the potential for probe dependence of the novel allosteric modulators and the contribution of different degrees of intrinsic agonist efficacy to the phenomenon. mAChR agonists of variable efficacies were selected to use as orthosteric probes. Specifically, the endogenous agonist, ACh, was chosen as this represents the physiologically relevant mAChR neurotransmitter against which all putative allosteric ligands need to be tested. Oxotremorine-M (Oxo-M) was chosen, as this is commonly used as a high efficacy mAChR agonist in numerous in vitro and in vivo studies (e.g., Valant et al., 2012). Iperoxo (Ixo) was chosen as it remains the highest efficacy mAChR agonist identified to date (Langmead and Christopoulos 2013; Schrage et al., 2013), while Xanomeline (Xan) was chosen because it is a partial agonist, has a functional preference for M_{1} and M_{4} mAChRs over other mAChR subtypes, and had progressed into clinical trials on the basis of this selectivity (see Introduction).

Initially, the affinities and intrinsic efficacies of the orthosteric agonists were characterised using an assay of $\mathrm{M}_{1} \mathrm{mAChR}$-mediated IP_{1} accumulation, a classic signalling pathway downstream of activation of $\mathrm{G}_{\mathrm{q} / 11 \text {-linked receptors. All orthosteric agonists increased } \mathrm{IP}_{1} 1}$ accumulation in our FlpInCHO-hM ${ }_{1}$ cell line in a concentration-dependent manner. ACh, Ixo and Oxo-M were all full agonists in this assay, whereas, Xan was a weak partial agonist (with an $\mathrm{E}_{\text {max }}$ approx. 30% of that observed for ACh ; Table 1). The functional affinities $\left(\mathrm{p} K_{\mathrm{A}}\right)$ and operational efficacies (τ) of the othosteric probes were also determined at the $\mathrm{M}_{1} \mathrm{mAChR}$ by treating the cells with the irreversible alkylating agent, phenoxybenzamine (PBZ), to occlude the orthosteric site (Furchgott 1966), thus reducing the number of accessible M_{1} binding sites in the FlpInCHO-hM ${ }_{1}$ cells. Increasing levels of alkylation of the orthosteric site by PBZ
substantially reduced the $\mathrm{E}_{\text {max }}$ of all agonists with minimal effects on the potency of ACh , Oxo-M and Xan (Figure 2). Small, albeit significant ($p<0.05$) effects were observed on the potency of Ixo, where a $0.5-1 \log$ unit shift was observed when treated with the higher concentrations of $\operatorname{PBZ}(1 \mu \mathrm{M}$ and $10 \mu \mathrm{M}$, respectively). Overall, this suggests that this system has a low level of receptor reserve for this pathway in our cell line. The family of curves for each agonist was globally fitted to an operational model of agonism (Eqn 1), with the efficacy parameter, τ, allowed to vary for each curve (since τ is determined by receptor density) but all other parameters constrained to be shared. The resulting agonist functional affinity values, determined as equilibrium dissociation constants (K_{A}), and the τ values for the control curve (absence of PBZ) are listed in Table 1, which confirms a rank order of efficacies of Ixo $(\tau=10.7)>$ Oxo-M $(\tau=4.6)>\operatorname{ACh}(\tau=3.6) \gg \operatorname{Xan}(\tau=0.5)$. In addition to the efficacy estimates, the agonist K_{A} values revealed that Xan and Ixo had significantly higher affinities for the $\mathrm{M}_{1} \mathrm{mAChR}$ than ACh or Oxo-M ($p<0.05$, Table 1).

BQCA exhibits probe dependence with different orthosteric agonists at the $M_{1} m A C h R$.

As outlined in the Introduction, the simplest mechanism to explain probe dependence is the classic two-state MWC model. This model predicts that the effect of a PAM is to positively modulate the activity of an orthosteric agonist but negatively modulate the activity of an orthosteric antagonist (inverse agonist) in a manner that tracks with the intrinsic efficacy of the orthosteric ligand, i.e., higher efficacy agonists will be potentiated to a greater degree than lower efficacy agonists; the model does not predict pathway-biased modulation without incorporation of additional receptor states (Canals et al., 2012; Christopoulos 2014; Ehlert and Griffin, 2014). Thus, the next series of experiments investigated the potential for probe dependence between different agonists and the prototypical $\mathrm{M}_{1} \mathrm{mAChR}$ PAM, BQCA.

Figure 3 shows the results of interaction experiments between increasing concentrations of BQCA and each of the orthosteric agonists ACh, Oxo-M, Ixo or Xan in the IP_{1} accumulation assay. BQCA did not affect the $\mathrm{E}_{\text {max }}$ of any orthosteric agonist tested, but did potentiate the effects of ACh on IP_{1} signal transduction. The data were globally fitted to an operational model of allostery (Eqn 2), where the $\mathrm{p} K_{\mathrm{B}}$ of the allosteric modulator, BQCA, was constrained to 4.78 (Mistry et al., 2016). This constraint was used to aid model convergence, and was selected because it is the binding affinity value determined from full interaction equilibrium binding assays between $\mathrm{ACh}, \mathrm{BQCA}$ and ${ }^{3} \mathrm{H}$-NMS in the same cell line used for this study (Mistry et al., 2016). The resulting parameter values are listed in Table 2. From these experiments and resulting analysis, two important findings were made. First, the degree of potentiation of each agonist by BQCA was variable (α values), clearly indicating probe dependence. Second, it was of note that the allosteric modulation was manifested only on the potency of each agonist (i.e., changing the EC_{50} and not on the $\mathrm{E}_{\text {max }}$). Given that the prior alkylation studies (Figure 2, Table 1) confirmed that this assay has minimal receptor reserve, any potential allosteric effects on agonist signalling efficacy would have been revealed as increases in the $\mathrm{E}_{\text {max }}$, at least for the lower efficacy agonists. The fact that this was not observed in any instance indicates that BQCA modulates only the affinity of the orthosteric agonists, not their efficacy. As such, the co-operativity estimates ($\alpha \beta$) from the operational model analysis are measures of "pure" affinity modulation (α).

As summarized in Table 2 and Figure 3, BQCA potentiated ACh $\left(\alpha_{\mathrm{ACh}}=40\right)$ and Ixo $\left(\alpha_{\mathrm{Ixo}}=\right.$ 25) to the greatest extent; Oxo-M $\left(\alpha_{\text {Oxom }}=10\right)$ was potentiated to a lesser extent, although realistically these differences in potentiation were marginal, showing only a four-fold difference at most. BQCA showed no modulation, i.e., was a neutral allosteric ligand (NAL),
with respect to the weakest agonist, Xan. On its own, BQCA showed very little to no intrinsic efficacy $\left(\tau_{\mathrm{B}}=0.2-0.8\right)$, confirming previous findings (Yeatman et al., 2014).

Effects of novel $M_{1} m A C h R$ PAMs on ACh-mediated IP P_{1} accumulation

We next investigated the effects of each of the two 4-phenylpyridin-2-one-based (MIPS1674 and MIPS1745) and the 6-phenylpyrimidin-4-one-based (MIPS1780) analogues on IP_{1} accumulation mediated by the endogenous agonist, ACh (Figure 4). As observed with BQCA, each of the novel $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs enhanced only the potency of ACh. As above, the allosteric modulator affinity values were constrained to the binding affinity values ($\mathrm{p} K_{\mathrm{B}}$) for MIPS1674 (4.45), MIPS1745 (4.50) and MIPS1780 (4.88) that were previously determined by Mistry et al. (2016) in full binding interaction studies in the same cell line as used in this study. The resulting co-operativity estimates (α_{ACh}) are shown in Table 2 and Figure 6. The ACh response was potentiated to a greater extent by MIPS1780 $\left(\alpha_{\mathrm{ACh}}=302\right)$ and MIPS1745 $\left(\alpha_{\mathrm{ACh}}=129\right)$ than BQCA $\left(\alpha_{\mathrm{ACh}}=40\right)$, whereas MIPS1674 $\left(\alpha_{\mathrm{ACh}}=11\right)$ clearly showed a substantially lower degree of potentiation. Interestingly, we also noted a number of differences in the behaviour of the novel PAMs compared to our initial preliminary characterization (Mistry et al., 2016). For instance, MIPS1674 showed modest modulatory effects on ACh but little to no direct allosteric agonism. MIPS1745 was not a "pure" PAM as originally described by Mistry et al., (2016) but rather, a PAM-agonist ($\tau_{\mathrm{B}}=1.2$) like MIPS1780 ($\tau_{\mathrm{B}}=5.9$). Although the same cellular background was used for both the current study and that of Mistry et al. (2016), the IP_{1} accumulation assay protocol was performed under different conditions (adherent vs suspended cells), which may account for the differences observed.

Investigation of mechanisms of probe dependence mediated by MIPS1674, MIPS1780 and MIPS1745 with different agonists at the $M_{1} m A C h R$.

To determine whether the novel PAMs exhibit probe dependence, the interaction experiments were extended to include the effects of other mAChR agonists on IP_{1} accumulation. As observed with BQCA, no effect of the novel PAMs on the maximal response of the various agonists used in this study was detected (Figure 5), again suggesting that any allosteric modulation by the novel M_{1} mAChR PAMs is manifested at the level of agonist binding affinity only. Subsequent analysis of these data by an operational model of allostery (Eqn 2) provided co-operativity estimates for individual modulators with each agonist (Table 2; summarized Figure 6B-D). MIPS1674 potentiated the ACh response $(\alpha=11)$ to a greater extent than Oxo-M $(\alpha=5)$ and significantly more than that seen with Ixo $(\alpha=3)$, suggesting that this modulator exhibits probe dependence, modulating the endogenous agonist ACh to a greater extent than the higher potency agonist Ixo. MIPS1745 and MIPS1780 behaved like BQCA, in that they potentiated ACh, Ixo and Oxo-M to similar extents (Figure 6). Xan was weakly modulated $(\alpha=19)$ by the most robust PAM, MIPS1780, although the co-operativity estimate was associated with a larger error than for the other agonists. No modulation of the Xan response was observed with any of the other allosteric modulators tested, again consistent with a NAL effect. Nonetheless, the overall findings are broadly consistent with those seen with BQCA, that is, the higher efficacy agonists were modulated to a greater extent than the lowest efficacy agonist (Xan). For a weak PAM, i.e., MIPS1674, the overall degree of positive modulation was low irrespective of the agonist (Figure 6B), whereas for the most robust PAMs, i.e., MIPS1780 and MIPS1745, the magnitude of the positive cooperativity noted with ACh, Oxo-M or Ixo (Figure 6) was in the range observed with the prototypical PAM, BQCA.

Novel M_{1} PAMs show minimal evidence of biased modulation

It is not uncommon to see different overall degrees of functional PAM effects of GPCR modulators in cell-based assays. Although this may be taken as presumptive evidence of "pathway biased modulation", a simpler explanation is that assays characterized by stronger stimulus-response coupling (e.g., more amplified responses), may be more prone to manifesting stronger PAM effects due to the potential greater sensitivity of PAM-agonism being unmasked in such assays (Keov et al., 2011). It is only when this property is not a contributor that true pathway bias can be considered. Previously, BQCA showed no bias, relative to ACh , when tested against carbachol in a range of signalling assays (Canals et al., 2012; Yeatman et al., 2014). To confirm this general effect we used the endogenous agonist, ACh, and the PAM, BQCA, as comparators for the effects of the new chemotypes. We first examined the effect of BQCA on the endogenous agonist, ACh, toward 3 signalling pathways; ERK1/2 phosphorylation as a representative of an efficiently coupled pathway; IP_{1} accumulation and β-arrestin-2 recruitment (β arr2) as weakly coupled pathways. In Figure 7A-C, the family of curves were globally fitted to the operational model of allostery (Eqn 2), constraining the $\mathrm{p} K_{\mathrm{B}}$ values to the binding affinity values determined by Mistry et al., (2016), as described above, and with the resulting parameters shown in Table 3. The rank order of co-operativity for the pathways was ERK $1 / 2(\alpha=871) \gg \operatorname{IP}_{1}(\alpha=40) \geq \beta \operatorname{arr} 2(\alpha=23)$.

The novel 4-phenylpyridin-2-ones and 6-phenylpyrimidin-4-one were also tested on the same three pathways and the data sets were analysed in the same manner as BQCA (described above). MIPS1745 and MIPS1780 had the greatest efficacy $\left(\tau_{\mathrm{B}}\right)$ toward the more amplified ERK1/2 pathway and lower efficacy toward the IP_{1} and β arr2 pathways (Figure $8 \mathrm{H}-\mathrm{I}$, Figure 9). MIPS1780 strongly potentiated $\left(\alpha_{\text {ERK }}=550 ; \alpha_{\mathrm{IP} 1}=309 ; \alpha_{\beta a r 2}=229\right)$ all pathways. A similar pattern of potentiation was seen with MIPS1745 ($\alpha_{\text {ERK }}=380 ; \alpha_{\mathrm{IP} 1}=129 ; \alpha_{\text {Barr2 }}=42$)
(Table 3, Figure 8 and Figure 9). The rank order of co-operativity was ERK $1 / 2>\mathrm{IP}_{1}>\beta$ arr2, thus as observed with BQCA, MIPS 1745 and MIPS 1780 were PAMs toward all pathways, and the potentiation of the responses tracked with stimulus coupling.

When the MIPS1674 data were analysed using the operational model of allostery (Eqn 2), it did not appear to modulate β arr2 recruitment, but did weakly modulate the other signalling pathways. As shown in Figure 8, Figure 9 and Table 3, MIPS1674 had weak efficacy toward the ERK1/2 $\left(\tau_{\mathrm{B}}=1.4\right)$ pathway and no efficacy for the IP_{1} or β arr2 pathways. MIPS1674 weakly modulated ACh activity toward ERK $1 / 2$ and IP_{1}, with a rank order of co-operativity of $\mathrm{IP}_{1}(\alpha=12)>$ ERK $1 / 2(\alpha=4)$. By visual inspection of the concentration response curves, MIPS1674 acted as a "pure" PAM towards IP_{1}, is an allosteric agonist with minimal PAM activity toward ERK1/2, and was a NAL toward β arr2. Although, these results may suggest that MIPS1674 has the potential to be a biased modulator at the $\mathrm{M}_{1} \mathrm{mAChR}$, a more parsimonious explanation is that the low level of receptor expression and differences in stimulus-response coupling the IP_{1} and β-arrestin recruitment pathway resulted in an insufficient response window to reveal any potentiation of the $\mathrm{ACh} \beta$-arrestin recruitment response, particularly since MIPS1674 was the least effective PAM of the new series.

Discussion:

The discovery of BQCA ushered in a new era of drug discovery for the $\mathrm{M}_{1} \mathrm{mAChR}$, particularly with regards to novel potential modalities for treatment of cognitive deficits (Ma et al., 2009; Davie et al., 2013). Subsequent detailed pharmacological characterization of BQCA also revealed key features consistent with the simplest mechanism of receptor allostery, namely the two-state MWC model (Canals et al., 2012), and thus provided a guide for the subsequent pharmacological assessment of novel allosteric modulators at both mAChRs and other GPCRs. This is relevant to the current study, which investigated novel PAMs chemically distinct from BQCA. Preliminary findings with the 4-phenylpyridin-2-ones and 6-phenyl-4-ones suggested that they may have diverse pharmacological phenotypes, reflective of more complex, and potentially biased, allosteric behaviours (Mistry et al., 2016). The main findings of this study indicate that the novel $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs display probe dependence at the $\mathrm{M}_{1} \mathrm{mAChR}$ but minimal evidence of biased modulation. These findings have implications for future elaboration of this new chemical series, with an ultimate aim towards producing molecules that are more tractable to "drug-like" behaviour than BQCA.

As indicated previously, the key prediction of a two-state MWC model is that the degree of allosteric modulation will "track" with the efficacy of the orthosteric probe, i.e., if an allosteric ligand prefers an active receptor state, it follows that: (i) it will be a PAM of agonists and a NAM (negative allosteric modulator) of inverse agonists (and vice versa for modulators that prefer the inactive state); (ii) that higher efficacy agonists will be potentiated by PAMs to a greater extent than lower efficacy agonists; (iii), there should be no pathwaybiased modulation (Canals et al., 2011; 2012). Any divergence from this behaviour could suggest a more complex mode of action involving multiple receptor states. However, since cellular stimulus-response coupling will have an effect on observed agonism (Keov et al.,
2011), it is vital to account for this property and, where possible, apply approaches that divorce the host system-dependence of allostery and agonism from the underlying molecular parameters that govern these phenomena. The different degree of maximal agonist responsiveness observed in the IP_{1} accumulation assays indicated that our recombinant cell line likely exhibited a very low receptor reserve, which was confirmed by receptor alkylation experiments and application of an operational model of agonism. However, it should be noted that a detailed analysis of the predictions of the MWC model in operational terms by Ehlert and Griffin (2014) found that the only aspects of the stimulus-response transduction mechanism that should affect observed modulation ($\alpha \beta$ values) are receptor-proximal events, e.g., receptor or transducer stoichiometry. Moreover, low efficacy agonists may be expected to show changes in the maximal response (Ehlert and Griffin, 2014), which was not observed in our current study (e.g., with Xan). It is possible that this reflects a divergence from an MWC mechanism or, more parsimoniously, that Xan selects for a very low activity state such that any effects on its signaling efficacy simply cannot be observed over the concentration range of PAMs utilized in our study.

The low receptor reserve of the FlpInCHO-hM 1 cell system proved both advantageous and, to some extent, disadvantageous depending on the question that was asked. An advantage of the low receptor reserve system is that the lack of effect of BQCA and the novel PAMs on agonist $\mathrm{E}_{\text {max }}$, while modulating potency, could only be explained if the modulators mediated their effects purely through changing agonist affinity, as efficacy effects would manifest as a change in $\mathrm{E}_{\text {max }}$, particularly for Xan. This allowed the application of a simplified operational model of allostery that quantified the global cooperativity of the PAMs (Aurelio et al., 2009). Although differences were observed in the behaviours and operational model parameter estimates in our IP_{1} accumulation studies versus those performed by Mistry et al. (2016), this
likely reflected variances in IP_{1} assay protocol, as well as potential variability in cell background due to cell passage. Irrespective, our analysis suggested that all novel PAMs, like BQCA, tended to potentiate higher efficacy agonists to a greater extent than the low efficacy agonist, Xan.

A possible disadvantage of the low receptor reserve displayed by our cell line was evident in the studies of allosteric modulation between different pathways linked to $\mathrm{M}_{1} \mathrm{mAChR}$ activation. Ideally, the choice of pathways was designed to reflect events that are generally considered substantially proximal (e.g., β-arrestin 2 recruitment) or substantially downstream (e.g., pERK1/2) from receptor activation, with IP_{1} accumulation representing a pathway that would display a degree of stimulus-response coupling somewhere between the two (Lanzafame et al., 2003; Canals et al., 2012; Abdul-Ridha et al., 2014). This, in turn, would allow for a clear delineation of whether the modulation between a given agonist-modulator pair tracked with the degree of stimulus-response coupling or differed. The former scenario was generally the case when comparing the effects of the PAMs on ACh-mediated pERK1/2 to either β-arrestin 2 recruitment or IP_{1} accumulation, but more equivocal when comparing ACh-mediated β-arrestin 2 recruitment to IP_{1} accumulation. However, if the degree of receptor coupling efficiency to the IP_{1} pathway and β-arrestin 2 recruitment pathways was similar, due to low receptor reserve, then the MWC model would predict similar degrees of potentiation at each pathway, and it is thus not surprising that the PAM effects on ACh at β arrestin 2 recruitment or IP_{1} accumulation did not display the degree of separation seen when compared to the pERK $1 / 2$ assays.

It is now established that allosteric ligands have the potential to engender multiple biologically active GPCR states (Kenakin et al., 2012; Davey et al., 2012; Wislar et al.,
2007). As a consequence, deviations from simple MWC-governed allosteric behaviour in terms of probe dependence and pathway bias have been observed at multiple GPCRs, emphasising the importance of routinely investigating these therapeutically relevant paradigms whenever characterising novel ligands (Christopoulos 2014; Price et al., 2005; Valant et al., 2012). For example, at the $\mathrm{M}_{2} \mathrm{mAChR}$, the allosteric modulator, LY2033298, positively modulates the binding affinity of multiple orthosteric agonists, but has either positive or negative allosteric effects on the signalling efficacy and signalling pathway of the same agonists. Thus, functionally, LY2033298 is a PAM of Oxo-M, a NAL of ACh, and a NAM of Xan (Valant et al., 2012). This type of probe dependence cannot be reconciled within a two-state mechanism, and is clearly suggestive of biased modulation involving multiple receptor active states (Christopoulos 2014). Given that surrogate orthosteric probes are often used preclinically in vitro or in vivo, due to the metabolic instability of the endogenous GPCR agonist (Leach et al., 2010), or that multiple endogenous ligands and their metabolites exist for a single GPCR (van der Westhuizen et al., 2015, Wootten et al., 2012), a lack of appreciation of the differences underlying probe dependence as a function of intrinsic efficacy (i.e., simple two-state MWC model) or probe dependence as a function of different conformational states (i.e., biased modulation), can lead to misinterpretation of preclinical data and thus inappropriate selection of potential allosteric drug candidates for further optimization and development.

In conclusion, despite possessing a chemically distinct scaffold, the similar molecular fingerprints of the 4-phenylpyridine-2-one and 6-phenylpyrimidin-4-one PAMs to that of BQCA suggests a similar molecular mechanism of action, and is consistent with a common binding site. This site is proposed to overlap with the "common" allosteric binding pocket located in the extracellular vestibule of mAChRs. However, additional structure-function
analyses are required to confirm this hypothesis. Perhaps more importantly, the availability of a novel chemical scaffold of known molecular properties could facilitate the development of superior $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs with a higher likelihood of clinical translation than first generation compounds exemplified by BQCA.

Acknowledgements:

The authors would like to thank Dr. Christian Felder, Eli Lilly, for the generous gift of xanomeline.

Authorship contributions

Participated in research design: van der Westhuizen, Spathis, Valant, Christopoulos Conducted experiments: van der Westhuizen, Spathis, Valant, Khajehali Contributed reagents or analytical tools: Mistry, Jörg, Scammells Performed data analysis: van der Westhuizen, Spathis, Valant, Christopoulos Wrote or contributed to the writing of the manuscript: van der Westhuizen, Spathis, Khajehali, Jörg, Mistry, Valant, Capuano, Tobin, Sexton, Scammells, Christopoulos.

References:

Abdul-Ridha, A., Lane, J.R., Mistry, S.N., Lopez, L., Sexton, P.M., Scammells, P.J., Christopoulos, A., and Canals, M. (2014). Mechanistic insights into allosteric structurefunction relationships at the M1 muscarinic acetylcholine receptor. J Biol Chem 289: 33701-33711.

Aurelio, L., Valant, C., Flynn, B.L., Sexton, P.M., Christopoulos, A., and Scammells, P.J. (2009). Allosteric modulators of the adenosine A1 receptor: synthesis and pharmacological evaluation of 4-substituted 2-amino-3-benzoylthiophenes. J Med Chem 52: 4543-4547.

Black, J.W., and Leff, P. (1983). Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220: 141-162.

Bodick, N.C., Offen, W.W., Levey, A.I., Cutler, N.R., Gauthier, S.G., Satlin, A., Shannon, H.E., Tollefson, G.D., Rasmussen, K., Bymaster, F.P., et al. (1997). Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54: 465-473.

Bymaster, F.P., McKinzie, D.L., Felder, C.C., and Wess, J. (2003). Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28: 437-442.

Canals, M., Lane, J.R., Wen, A., Scammells, P.J., Sexton, P.M., and Christopoulos, A. (2012). A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J Biol Chem 287: 650-659.

Canals, M., Sexton, P.M., and Christopoulos, A. (2011). Allostery in GPCRs: 'MWC' revisited. Trends Biochem Sci 36: 663-672.

Caulfield, M.P. (1993). Muscarinic receptors - characterization, coupling and function. Pharmacol Ther 58: 319-379.

Changeux, J.P., and Christopoulos, A. (2016). Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166: 1084-1102.

Christopoulos, A. (1998). Assessing the distribution of parameters in models of ligandreceptor interaction: to log or not to log. Trends Pharmacol Sci 19: 351-357.

Christopoulos, A. (2014). Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol 86: 463-478.

Conn, P.J., Christopoulos, A., and Lindsley, C.W. (2009). Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8: 41-54.

Cortés, R., Probst, A., Tobler, H.J., Palacios, J.M. (1986). Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies. Brain Res 362: 239-253.

Cortés, R., Probst, A. and Palacios, J.M. (1987). Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neurosci 20: 65-107.

Davey, A.E., Leach, K., Valant, C., Conigrave, A.D., Sexton, P.M., and Christopoulos, A. (2012). Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinol 153: 1232-1241.

Davie, B.J., Christopoulos, A., and Scammells, P.J. (2013). Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem Neurosci 4: 1026-1048.

Davie, B.J., Valant, C., White, J.M., Sexton, P.M., Capuano, B., Christopoulos, A., and Scammells, P.J. (2014). Synthesis and pharmacological evaluation of analogues of benzyl quinolone carboxylic acid (BQCA) designed to bind irreversibly to an allosteric site of the M (1) muscarinic acetylcholine receptor. J Med Chem 57: 5405-5418.

Davoren, J.E., Lee, C.W., Garnsey, M., Brodney, M.A., Cordes, J., Dlugolenski, K., Edgerton, J.R., Harris, A.R., Helal, C.J., Jenkinson, S., et al. (2016). Discovery of the potent and selective M1 PAM-agonist N-[(3R,4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): Evaluation of efficacy and cholinergic side effects. J Med Chem 59: 6313-6328.

Elhert F.J. and Griffin M.T. (2014). Estimation of ligand affinity constants for receptor states in functional studies involving the allosteric modulation of G protein-coupled receptors: implications for ligand bias. J Pharmacol Toxicol Methods 69: 253-729

Elhert, F.J. and Tran, L.P. (1990). Regional distribution of M1, M2 and non-M1, non-M2 subtypes of muscarinic binding sites in rat brain. J Pharmacol Exp Ther 255: 11481157.

Furchgott, R.F. (1966). The use of b-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res 3: 21-55.

Kenakin, T. (2005). New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 4: 919-927.

Kenakin, T., and Christopoulos, A. (2013). Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12: 205-216.

Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos, A., and Novick, S. (2012). A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3: 193-203.

Keov, P., Sexton, P.M., and Christopoulos, A. (2011). Allosteric modulation of G proteincoupled receptors: a pharmacological perspective. Neuropharmacol 60: 24-35.

Kruse, A.C., Kobilka, B.K., Gautam, D., Sexton, P.M., Christopoulos, A., and Wess, J. (2014). Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13: 549-560.

Kruse, A.C., Ring, A.M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hubner, H., Pardon, E., Valant, C., Sexton, P.M., et al. (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504: 101-106.

Langmead, C.J., and Christopoulos, A. (2013). Supra-physiological efficacy at GPCRs: superstition or super agonists? Br J Pharmacol 169: 353-356.

Langmead, C.J., Watson, J., and Reavill, C. (2008). Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117: 232-243.

Lanzafame, A.A., Christopoulos, A., and Mitchelson, F. (2003). Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 9: 241-260.

Leach, K., Loiacono, R.E., Felder, C.C., McKinzie, D.L., Mogg, A., Shaw, D.B., Sexton, P.M., and Christopoulos, A. (2010). Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35: 855-869.

Ma, L., Seager, M.A., Wittmann, M., Jacobson, M., Bickel, D., Burno, M., Jones, K., Graufelds, V.K., Xu, G., Pearson, M., et al. (2009). Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci U S A 106: 15950-15955.

Melancon, B.J., Tarr, J.C., Panarese, J.D., Wood, M.R., and Lindsley, C.W. (2013).
Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer's disease. Drug Discov Today 18: 1185-1199.

Mistry, S.N., Jorg, M., Lim, H., Vinh, N.B., Sexton, P.M., Capuano, B., Christopoulos, A., Lane, J.R., and Scammells, P.J. (2016). 4-phenylpyridin-2-one derivatives: A novel class of positive allosteric modulator of the M1 Muscarinic Acetylcholine Receptor. J Med Chem 59: 388-409.

Monod, J., Wyman, J., and Changeux, J.P. (1965). On the nature of allosteric transitions: A plausible model. J Mol Biol 12: 88-118.

Nathanson, N.M. (2008). Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 119: 33-43.

Price, M.R., Baillie, G.L., Thomas, A., Stevenson, L.A., Easson, M., Goodwin, R., McLean, A., McIntosh, L., Goodwin, G., Walker, G., et al. (2005). Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68: 1484-1495.

Sauerberg, P., Olesen, P.H., Nielsen, S., Treppendahl, S., Sheardown, M.J., Honore, T., Mitch, C.H., Ward, J.S., Pike, A.J., Bymaster, F.P., et al. (1992). Novel functional M1 selective muscarinic agonists. Synthesis and structure-activity relationships of 3-(1,2,5-thiadiazolyl)-1,2,5,6-tetrahydro-1-methylpyridines. J Med Chem 35: 2274-2283.

Schrage, R., Seemann, W.K., Klockner, J., Dallanoce, C., Racke, K., Kostenis, E., De Amici, M., Holzgrabe, U., and Mohr, K. (2013). Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br J Pharmacol 169: 357-370.

Shekhar, A., Potter, W.Z., Lightfoot, J., Lienemann, J., Dube, S., Mallinckrodt, C., Bymaster, F.P., McKinzie, D.L., and Felder, C.C. (2008). Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165, 1033-1039.

Valant, C., Felder, C.C., Sexton, P.M., and Christopoulos, A. (2012). Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol Pharmacol 81: 41-52.
van der Westhuizen, E.T., Valant, C., Sexton, P.M., and Christopoulos, A. (2015). Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther 353: 246-260.

Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44: 423-450.

Wisler, J.W., DeWire, S.M., Whalen, E.J., Violin, J.D., Drake, M.T., Ahn, S., Shenoy, S.K., and Lefkowitz, R.J. (2007). A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A 104: 16657-16662.

Wootten, D., Savage, E.E., Valant, C., May, L.T., Sloop, K.W., Ficorilli, J., Showalter, A.D., Willard, F.S., Christopoulos, A., and Sexton, P.M. (2012). Allosteric modulation of endogenous metabolites as an avenue for drug discovery. Mol Pharmacol 82: 281-290.

Yeatman, H.R., Lane, J.R., Choy, K.H., Lambert, N.A., Sexton, P.M., Christopoulos, A., and Canals, M. (2014). Allosteric modulation of M1 muscarinic acetylcholine receptor internalization and subcellular trafficking. J Biol Chem 289: 15856-15866.

Footnotes:

a) This work was supported by National Health and Medical Research Council Program Grant [APP1055134]. AC is a Senior Principal, and PMS a Principal, Research Fellow of the National Health and Medical Research Council of Australia. CV is supported by a Future Fellowship from the Australian Research Council. ETvdW is supported by an Early Career Fellowship from the National Health and Medical Research Council of Australia.
b) This work has been presented in part at the ASCEPT-MPGPCR joint scientific meeting 2016 in Melbourne, Australia and at the GPCR workshop 2017 in Kona, Hawaii, USA.
c) Reprint requests to Arthur Christopoulos, Monash University, Drug Discovery Biology, 381 Royal Pde Parkville VIC 3052. Email:

Arthur.Christopoulos@monash.edu

d) ${ }^{1}$ SNM is currently located at the Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UNITED KINGDOM.

Legends for Figures:

Figure 1. Novel 4-phenylpyridine-2-ones and 6-phenylpyrimidin-4-one selectively modulate the M_{1} mAChR over other mAChR subtypes. (A) The structurally novel M_{1} mAChR PAMs selected for this study, MIPS1674, MIPS1745 and MIPS1780 (previously published as compounds "14, $\mathbf{1 7}$ and 29", respectively, by Mistry et al., (2016)). They were compared to the reference modulator, BQCA. (B) The 4-pheylpyridine-2-ones and 6-phenylpyrimidin-4-one based analogs all showed intrinsic efficacy and potentiation of the ERK1/2 response at the $\mathrm{M}_{1} \mathrm{mAChR}$. (C) The novel PAMs or BQCA did not modulate AChmediated ERK1/2 phosphorylation at the $\mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$ or $\mathrm{M}_{5} \mathrm{mAChR}$ subtypes, when tested at a concentration of $10 \mu \mathrm{M}$. Data are mean \pm SEM of four independent experiments performed with duplicate repeats.

Figure 2. Receptor alkylation assays identify low receptor reserve in FlpInCHO-M cell lines. FlpInCHO-M ${ }_{1}$ cells were pre-treated with different concentrations of phenoxybenzamine (PBZ) for 30 min , followed by extensive washout to reduce receptor reserve. Cells were then stimulated for 60 min with increasing concentrations of (A) ACh, (B) Ixo, (C) Oxo-M or (D) Xan. Decreases in $\mathrm{E}_{\text {max }}$ and minimal changes in EC_{50} values were observed with all orthosteric ligands, suggesting that the FlpInCHO-M1 cell line used in this study expressed low levels of M_{1} mAChRs. Data are mean \pm SEM of 6 independent experiments with repeats in duplicate. Fitted curves shown are global analysis based on the operational model (Eqn 1).

Figure 3. BQCA displays probe dependence with different agonists in IP ${ }_{1}$ accumulation. Interaction between (A) ACh, (B) Ixo, (C) Oxo-M or (D) Xan with or without increasing
concentrations of BQCA were performed in $\mathrm{FlpInCHO}-\mathrm{hM}_{1}$ cells at $37^{\circ} \mathrm{C}$ for 1 h . Data are expressed as a percentage of the maximal ACh response and are the mean \pm SEM of 6-15 independent experiments performed in duplicate. Fitted curves are from global analysis of datasets according to an operational model of allosterism (Eqn 2) with parameter estimates shown in Table 2.

Figure 4. The structurally novel PAMs differentially modulate ACh-induced IP ${ }_{1}$ accumulation at the $\boldsymbol{M}_{\boldsymbol{I}} \boldsymbol{m A C h R}$. Experiments were performed on FlpInCHO-hM ${ }_{1}$ cells, using increasing concentrations of ACh with or without increasing concentrations of (A) MIPS1674, (B) MIPS1745 or (C) MIPS1780 at $37^{\circ} \mathrm{C}$ for 1 h . Data are expressed as a percentage of maximum ACh response and are the mean \pm SEM of 15 independent experiments performed in duplicate. Fitted curves are from global analysis of datasets according to an operational model of allosterism (Eqn 2), with parameter estimates shown in Table 2.

Figure 5. The novel M_{1} PAMs modulate $I P_{1}$ accumulation with different orthosteric probes to different extents. IP_{1} accumulation assays in FlpInCHO-hM M_{1} cells were performed with increasing concentrations of different orthosteric probes (A, D, G) Ixo, (B, E, H) Oxo-M or (C, F, I) Xan at $37^{\circ} \mathrm{C}$ for 1 h . Allosteric modulators (A, B, C) MIPS1674, (D, E, F) MIPS1745 and (G, H, I) MIPS1780 were co-added with the orthosteric ligands for 1h at $37^{\circ} \mathrm{C}$. Curves represent the best global fit to the allosteric operational model (Eqn 2) with the resulting parameters found in Table 2. Data are mean \pm SEM of 6 independent experiments with repeats in duplicate.

Figure 6. Probe-dependence between orthosteric agonists and allosteric modulators. Cooperativity estimates $(\log \alpha)$ were derived from global analysis of data sets in Figures 4 and 5 and resulting parameters are reported in Table 2. (A) BQCA potentiated ACh and Ixo more than Oxo-M. (B) MIPS1674 potentiated ACh to a greater extent than Ixo or Oxo-M. (C) MIPS1745 potentiated ACh, Ixo and Oxo-M to similar extents. (D) MIPS1780 potentiated ACh, Ixo and Oxo-M to a greater extent than Xan. Data are mean \pm SEM of 6-15 independent experiments with repeats in duplicate. Data were analyzed by One-way ANOVA with a Neuman-Kewls multiple comparison test, where $* p<0.05$ was considered significantly different.

Figure 7. BQCA potentiates ACh at three distinct signaling pathways. FlpInCHO-hM cells were stimulated with different concentrations of ACh and responses to three different signaling pathways were measured. β-arrestin 2 recruitment and ERK1/2 responses were measured after 5 min of stimulation, whereas IP_{1} accumulation was measured after 1 h . BQCA potentiates ACh signaling toward (A) β-arrestin 2 recruitment, (B) IP_{1} accumulation and (C) ERK1/2 phosphorylation. Data were fitted with the allosteric operational model with the resulting parameters reported in Table 3. Data are mean \pm SEM of 6-15 independent experiments with repeats in duplicate.

Figure 8. Minimal evidence for pathway biased modulation by the novel M_{1} PAM scaffolds. FlpInCHO-hM ${ }_{1}$ cells were stimulated with different concentrations of ACh and responses to three different signaling pathways were measured. β-arrestin 2 recruitment and ERK $1 / 2$ responses were measured after 5 min of stimulation and IP_{1} accumulation was measured after 1h. MIPS1674 acted as a neutral allosteric ligand toward (A) β-arrestin 2 recruitment, as a "pure" PAM for (D) IP_{1} accumulation and an allosteric agonist with
minimal PAM activity towards (G) ERK1/2 signalling. MIPS1745 and MIPS1780 were PAM-agonists toward (B and C) β-arrestin 2 recruitment, (E and F) IP_{1} accumulation and (H and I) ERK $1 / 2$ phosphorylation, suggesting that they are not biased modulators of ACh at the $\mathrm{M}_{1} \mathrm{mAChR}$. Fitted curves are from global analysis of datasets according to an operational model of allosterism (Eqn 2), with parameter estimates shown in Table 3. Data are mean \pm SEM of 4-15 independent experiments with repeats in duplicate.

Figure 9. Comparison of the efficacy and co-operativity estimates of the 4-phenylpyridin-2-one and 6-phenylpyrimidin-4-one PAMs toward three signaling pathways. FlpInCHOhM_{1} cells were stimulated with different concentrations of ACh and responses to three different signaling pathways were measured. ERK $1 / 2$ phosphorylation and β-arrestin 2 recruitment were measured after 5 min stimulation at $37^{\circ} \mathrm{C}$. IP_{1} accumulation was measured following stimulation with ligands for 1 h at $37^{\circ} \mathrm{C}$. Data from interaction experiments between different concentrations of ACh and PAMs were fitted to the operational model of allosterism (Eqn 2) and the (A, C, E, G) efficacy $\left(\log \tau_{\mathrm{B}}\right)$ and (B, D, F, H) cooperativity (log d) parameters were obtained (also shown in Table 3). Data are mean \pm SEM of 4-8 independent experiments with repeats in duplicate. Data were analysed by one-way ANOVA, with Neuman-Kewls multiple comparisons tests, where ${ }^{*} p<0.05$ was considered to be significantly different.

Tables:

Table 1. Empirical and operational model parameter estimates for the orthosteric ligands in mediating the $I P_{1}$ accumulation via activation of the $\mathrm{M}_{1} \mathrm{mAChR}$ in FlpInCHO-hM1 cells. Concentration response curves for orthosteric ligands were established in the absence or presence of PBZ pretreatment (followed by extensive washout). Data were fitted using the operational model (Eqn 1) to determine the functional affinity $\left(\mathrm{pK}_{\mathrm{A}}\right)$ and operational efficacy $(\log \tau)$ values. Parameter values are the mean \pm SEM of 8 independent experiments with repeats in duplicate. Data were analyzed by one way ANOVA (with alpha $=0.01$) using a Dunnett's multiple comparisons test, where ${ }^{*} p<0.05$ was considered to be significantly different to those of the endogenous agonist ACh.

Ligand	$\mathbf{p E C}_{\mathbf{5} \boldsymbol{0}}{ }^{\mathbf{a}}$	$\mathbf{E}_{\text {max }}{ }^{\mathbf{b}}$	$\mathbf{p K _ { \mathbf { A } }}{ }^{\mathbf{c}}$	$\mathbf{L o g} \boldsymbol{\tau}_{\mathbf{A}}{ }^{\mathbf{d}}$	$\boldsymbol{\tau}_{\mathbf{A}}{ }^{\mathbf{e}}$
ACh	5.79 ± 0.07	99.7 ± 2.9	5.26 ± 0.23	0.55 ± 0.29	3.6
Ixo	$7.97 \pm 0.09^{*}$	101.3 ± 3.3	$6.99 \pm 0.17^{*}$	$1.03 \pm 0.23^{*}$	10.7
Oxo-M	6.08 ± 0.13	90.3 ± 4.8	5.35 ± 0.28	$0.66 \pm 0.40^{*}$	4.6
Xan	$6.96 \pm 0.21^{*}$	$29.8 \pm 2.7^{*}$	$6.48 \pm 0.51^{*}$	$-0.31 \pm 1.3^{*}$	0.5

${ }^{\mathrm{a}}$ Negative logarithm of the EC_{50} value of the vehicle-pretreated control curve.
${ }^{\mathrm{b}}$ Maximal agonist response under the vehicle-pretreated conditions, relative to ACh
${ }^{c}$ Negative logarithm of the functional affinity value constant K_{A}, derived using Eqn 1.
${ }^{\mathrm{d}}$ Logarithm of the operational efficacy parameter for the orthosteric agonist in the absence of PBZ-pretreatment derived using Eqn 1.
${ }^{\mathrm{e}}$ Antilogarithm of the operational efficacy parameter.

Table 2. Allosteric model estimates for 4-phenylpyridine-2-ones and 6-phenylpyrimidin-4-ones at there $\mathbf{M}_{1} \mathbf{m A C h R}$ with different $\mathbf{m A C h R}$ othosteric agonists for IP1 accumulation in FlpInCHO-hM1 cells. Orthosteric agonist concentration-rense curve families in the absence or presence of each modulator were analysed using Eqn 2, with the $\log K_{\mathrm{B}}$ constrained to the value deriveeg previously in Mistry et al., (2016). Data are the mean \pm SEM of 4-15 independent experiments with repeats in duplicate. Data were analyzed Kewls multiple comparison test, where $* p<0.05$ was considered to be significantly different to ACh. $\begin{array}{lll} & & \text { MIPS1674 }\end{array}$

MIPS1780

	$\log \alpha^{\text {a }}$	$(\boldsymbol{\alpha})^{\text {b }}$	$\log \tau_{\mathrm{B}}{ }^{\text {c }}$	$\left(\tau_{B}\right)^{\text {d }}$	$\boldsymbol{\operatorname { l o g }} \alpha^{\text {a }}$	$(\boldsymbol{\alpha})^{\text {b }}$	$\log \tau_{\mathrm{B}}{ }^{\text {c }}$	$\left(\tau_{B}\right)^{\text {d }}$	$\log \alpha^{\text {a }}$	$(\alpha)^{\text {b }}$	$\log \tau_{\mathrm{B}}{ }^{\mathrm{c}} \stackrel{\stackrel{\circ}{0}}{\stackrel{\rightharpoonup}{\mathrm{U}}}$	$\left(\tau_{B}\right)^{\text {d }}$	$\log \alpha^{\text {a }}$	$(\boldsymbol{\alpha})^{\text {b }}$	$\log \tau_{\mathrm{B}}{ }^{\text {c }}$	$\left(\tau_{B}\right)^{\text {d }}$
ACh	1.60 ± 0.09	(40)	-0.46 ± 0.12	(0.3)	1.06 ± 0.08	(11)	-3	(0)	2.11 ± 0.12	(129)	0.08 00.0 閨	(1)	2.48 ± 0.14	(302)	0.77 ± 0.04	(6)
Ixo	1.40 ± 0.14	(25)	-0.09 ± 0.10	(0.8)	0.44 $\pm 0.17 *$	(3)	-3	(0)	1.86 ± 0.17	(72)	$0.10 \pm 0.0 \text {. }$	(1)	2.22 ± 0.17	(166)	0.87 ± 0.05	(7)
Oxo-M	0.99 ± 0.18 *	(10)	-0.75 ± 0.33	(0.2)	0.69 ± 0.15	(5)	-3	(0)	1.86 ± 0.22	(72)	$-0.14 \pm 0 \text {. }$	(0.7)	1.98 ± 0.17	(95)	0.78 ± 0.04	(6)
Xan	NM		NM		NM		NM		1	(129)	$0.38 \pm 0.05^{*}$	(2)	1.29 ± 0.62	(19)	1.16 $\pm 0.07 *$	(14)

NM; no modulation (NAL effect)
${ }^{\text {a }}$ Logarithm of the functional cooperativity estimate between the orthosteric ligand and allosteric modulator derived using Eqn 2.
${ }^{\mathrm{b}}$ Antilogarithm of the functional cooperativity estimate between the orthosteric ligand and allosteric modulator
${ }^{\mathrm{c}}$ Logarithm of the operational efficacy parameter of the allosteric modulator derived using Eqn 2. Where no intrinsic efficacy of the allosteric modulator was observed, the τ_{B} values were constrained to $-3(\tau=0.001)$ to aid model convergence.
${ }^{\mathrm{d}}$ Antilogarithmhm of the operational efficacy parameter of the allosteric modulator

Table 3. ACh potency and allosteric model parameter estimates for interaction with 4-phenylpyrigitine-2-ones and 6-phenylpyrimidin-4ones at the M_{1} mAChR for three different signaling pathways in FlpInCHO-hM1 cells. For allostegic model analysis, ACh concentrationresponse curves, established in the absence or presence of each modulator, were fitted to Eqn 3. The inithal increase in ERK $1 / 2$ phosphorylation data was used (with the decreasing phase removed) for the purpose of the ERK1/2 analysis. Data a experiments with repeats in duplicate. Data were analyzed by one-way ANOVA with a Newman-Kewher post hoc test to compare all groups.

NM; no modulation (NAL effect)
${ }^{\text {a }}$ Negative logarithm of the $\mathrm{ACh}_{\mathrm{EC}}^{50}$ value
${ }^{\mathrm{b}}$ Negative logarithm of the binding affinity value determined previously in Mistry et al., (2016), and constrained as a constant in the current analysis.
${ }^{\mathrm{c}}$ Logarithm of the cooperativity between ACh and the allosteric modulator, derived using Eqn 2.
${ }^{\mathrm{d}}$ Logarithm of the operational efficacy parameter of the allosteric modulator, derived using Eqn 2; or congrtrained to -3 where no intrinsic efficacy of the allosteric modulator was observed.

FIGURE 1

B

[^0]C

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

[^0]:
 ACh
 +MIPS1674 ($3 \mu \mathrm{M}$)
 +MIPS1745 ($1 \mu \mathrm{M}$)

 + MIPS1780 ($0.1 \mu \mathrm{M})$
 $+B Q C A(0.3 \mu \mathrm{M})$

