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Abstract 

  Cariprazine, an orally active and potent dopamine D3-preferring D3/D2 receptor 

partial agonist, is approved to treat adults with schizophrenia (US and Europe) and manic 

or mixed episodes associated with bipolar I disorder (US). Cariprazine also displays 

partial agonism at serotonin (5-HT) 5-HT1A receptors and antagonism at 5-HT2A and 

5-HT2B receptors in vitro. The study objective was to determine whether cariprazine leads 

to functional alterations of monoamine systems in vivo via electrophysiological recordings 

from anaesthetised rats. Dorsal raphe nucleus (DRN), locus coeruleus (LC), and 

hippocampus pyramidal neurons were recorded, and cariprazine was administered 

systemically or locally through iontophoresis. In the DRN, cariprazine completely inhibited 

the firing activity of 5-HT neurons, which was fully reversed by the 5-HT1A receptor 

antagonist, WAY100635. In the LC, cariprazine reversed the inhibitory effect of the 

preferential 5-HT2A receptor agonist, DOI, on norepinephrine (NE) neurons (ED50 = 

66 µg/kg) but did not block the inhibitory effect of the α2-adrenergic receptor agonist, 

clonidine. Cariprazine, iontophorized into the hippocampus, diminished pyramidal 

neuronal firing through activation of 5-HT1A receptors, while its concomitant administration 

did not dampen the suppressant effect of 5-HT. These results indicate that, in vivo, 

cariprazine acted as a 5-HT1A autoreceptor agonist in the DRN, as a 5-HT2A receptor 

antagonist in modulating the firing activity of LC NE neurons, and as a full agonist at 

5-HT1A receptors mediating the electrophysiological effect of 5-HT on pyramidal neurons. 

The modulatory actions of cariprazine on these monoaminergic systems may contribute 

to its therapeutic effectiveness in patients with depressive episodes.   
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Introduction 

  Cariprazine (US: Vraylar®, Europe: Reagila®) is a novel dopamine (DA) 

D3-preferring D3/D2 receptor and serotonin (5-HT) 5-HT1A receptor partial agonist that has 

been approved to treat schizophrenia (US and Europe) and manic or mixed episodes 

associated with bipolar I disorder (US). It was recently reported that adjunctive cariprazine 

was efficacious in patients who had an inadequate response to their medications used to 

treat major depressive disorder (MDD; Durgam et al., 2016a). Cariprazine has also shown 

efficacy in improving symptoms of depressive episodes in patients with bipolar I disorder 

(Durgam et al., 2016b). Unlike aripiprazole, another DA receptor partial agonist indicated 

for the treatment of schizophrenia and bipolar disorder, cariprazine acts as a D3/D2 

receptor partial agonist with a higher binding affinity and selectivity (5- to 8-fold) for D3 

versus D2 receptors and as a more potent antagonist at 5-HT2A receptors in vitro (Lawler 

et al., 1999; Kiss et al., 2010; Maeda et al., 2014). In addition to these properties, 

cariprazine was shown in vitro to be a partial agonist at 5-HT1A receptors in hippocampal 

tissue, a high affinity antagonist at 5-HT2B receptors, and to have a moderate affinity for 

histamine type 1 receptors (Kiss et al., 2010). 

 The role of 5-HT1A receptors in depression has been demonstrated by findings that 

the 5-HT1A receptor agonists buspirone and gepirone are effective antidepressants, either 

as a monotherapy or in combination with selective serotonin reuptake inhibitors (SSRIs) 

for acute treatment and relapse prevention (Trivedi et al., 2006; Bielski et al., 2008; Fabre 

et al., 2011). In addition, activation of 5-HT1A receptors by selective agonists such as 

8-OH-DPAT increases DA release in the prefrontal cortex (Arborelius et al., 1993; Li et 

al., 2004; Assié et al., 2005). 
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  Several lines of evidence suggest that blockade of 5-HT2A receptors in combination 

with SSRI treatment may contribute to substantial therapeutic benefits in MDD (Blier and 

Szabo, 2005). Indeed, medications that block 5-HT2A receptors, such as aripiprazole, 

quetiapine, risperidone, and olanzapine, but also mirtazapine and mianserin, are effective 

augmentation strategies in combination with SSRIs (Nelson and Papakostas, 2009; 

Kennedy et al., 2016). The only property that the above-mentioned drugs have in common 

is their capacity to block 5-HT2A receptors. Thus, it is likely that the 5-HT2A receptor 

antagonistic property of these agents acts by removing the inhibitory effects of SSRIs on 

the norepinephrine (NE) systems (Szabo and Blier, 2002; Seager et al., 2004; Dremencov 

et al., 2007; Chernoloz et al., 2009 and 2012). 

  In vitro studies are necessary to identify potential therapeutic compounds, but it is 

also important to study the activity of a drug in vivo in order to have a thorough 

mechanistic understanding. Prior experiments of this nature have been conducted on the 

characterization of the effects of cariprazine on DA neurons (Delcourte et al., 2017) but 

not on 5-HT or NE systems. To this end, the objectives of the present study were to 

determine the in vivo effects of acute cariprazine administration at 5-HT1A autoreceptors 

in the DRN, postsynaptic 5-HT1A receptors in the hippocampus, 5-HT2A receptors 

controlling NE neuron firing in the LC, and α2-adrenergic autoreceptors within the LC 

using electrophysiological techniques. 
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Materials and Methods 

 Animals. Experiments were carried out in male Sprague-Dawley rats (Charles River 

Laboratories, St. Constant, QC, Canada) weighing 250–350 g and housed in groups of 

two per cage, under standard laboratory conditions (12-hour light/dark cycle with food 

and water ad libitum). In vivo extracellular recordings were carried out in chloral 

hydrate-anesthetized rats (400 mg/kg, intraperitoneal [i.p.]) that were mounted in a 

stereotaxic apparatus. Supplemental doses of the anesthetic (100 mg/kg, i.p.) were given 

to maintain constant anesthesia and prevent nociceptive reaction to a pinching of the hind 

paws. Body temperature was maintained at 37°C throughout the experiment via a 

thermistor-controlled heating pad. Prior to electrophysiological recordings, a catheter was 

inserted in a lateral tail vein for systemic intravenous (i.v.) injection of pharmacologic 

agents. Recordings were generally carried within 30–60 min after achieving complete 

anesthesia. All experiments were carried out in accordance with the Canadian Council on 

Animal Care and the local Animal Care Committee (Royal Ottawa Institute of Mental 

Health Research, Ottawa, Canada). 

 Compounds. The preferential 5-HT2A receptor agonist 2,5-dimethoxy-

4-iodoamphetamine (DOI), the α2-adrenergic agonist clonidine, and the selective 5-HT1A 

receptor antagonist WAY100635 were dissolved in distilled water. Cariprazine (see 

chemical structure in Kiss et al., 2010) was dissolved in 5% lactic acid and distilled water 

for intravenous injection. Cariprazine was provided by Allergan (Dublin, Ireland); all other 

compounds were purchased from Tocris Bioscience (Minneapolis, MN). 
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 In Vivo Electrophysiological Recordings. A burr hole was drilled at the 

stereotaxic coordinates corresponding to the brain structure of interest (Paxinos and 

Watson, 2007). Extracellular recordings of neurons in the DRN and LC were carried out 

using single-barrel glass micropipettes (Stoelting, Spencerville, MD) preloaded with 

2 M NaCl and with impedance between 2 and 6 MΩ. Neurons in the cornu ammonis 

layer 3 (CA3) region of the hippocampus were recorded with five-barrel micropipettes. 

The central barrel, used for unitary recordings, and one side barrel, used for automatic 

current balancing, were filled with 2 M NaCl; the other barrels were filled with cariprazine 

(10 mM in distilled water and 5% lactic acid, pH 4), 5-HT creatinine sulfate (15 mM in 

0.2 M NaCl, pH 4), or quisqualic acid (1.5 mM in 0.2 M NaCl, pH 8). Cariprazine and 5-HT 

were ejected as cations and retained with a negative current; quisqualate was ejected as 

an anion and retained with a positive current. Drugs injected intravenously were 

administered in 0.1 mL aliquots at 60-s intervals to ensure stabilization of the recording 

and to determine drug effects in incremental doses; these recordings lasted 20 min on 

average. 

 Recording of DRN 5-HT Neurons. Putative 5-HT neurons were recorded by 

positioning single-barrel glass micropipettes at the following coordinates (in mm from 

lambda): anterior/posterior (AP), 1.0–1.2; mediolateral (ML), 0; and dorsal/ventral 

(DV), 5.0–7.0. The following criteria were used to identify 5-HT neurons: a bi- or triphasic 

extracellular waveform with a long-duration (0.8–1.2 ms), positive phase, and regular 

firing in the range of 0.5–2.5 Hz were recorded (Vandermaelen and Aghajanian, 1983).  

 Systemic intravenous injections were used to obtain the net effect of cariprazine on 

the firing of 5-HT neurons since it is one of the main factors controlling 5-HT transmission. 
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Subsequent injection of the selective 5-HT1A receptor antagonist WAY100635 served to 

determine the 5-HT1A nature of the suppression of firing. Full and partial 5-HT1A receptor 

agonists should suppress all 5-HT firing and lead to restoration of firing after prolonged 

administration through a desensitization of 5-HT1A autoreceptor (Blier and El Mansari, 

2013); therefore, the intrinsic activity of cariprazine at 5-HT1A autoreceptor was not 

determined as for the hippocampus. 

 Recording of LC NE Neurons. The NE neurons were recorded by positioning 

single-barrel glass micropipettes at the following coordinates (in mm from lambda): 

AP, -1.1 to -1.2; ML, 1.0–1.3; and DV, 5.0–7.0. The following criteria were used to identify 

NE neurons: regular firing rate (1.0–5.0 Hz), a long duration (0.8–1.2 ms) of the action 

potential, and a brisk excitatory response followed by a short period of inhibition in 

reaction to a nociceptive pinch of the contralateral hind paw (Aghajanian et al., 1977). To 

test the effect of cariprazine on 5-HT2A receptors, NE neurons were suppressed by the 

preferential 5-HT2A receptor agonist DOI (Szabo and Blier, 2001). Following an inhibition 

period, cumulative intravenous doses of cariprazine were administered to antagonize the 

inhibitory effect of DOI. The reversing effect of cariprazine was quantified relative to the 

stable baseline firing activity for over at least a 60-s interval preceding the intravenous 

injection.  

 Systemic intravenous injections of various drugs were used in order to obtain their 

net effect on the firing rate of NE neurons, since it is one of the main determinants of NE 

transmission. DOI had to be injected intravenously, and not locally applied, because the 

5-HT2A receptors controlling NE neurons firing activity are not located in the LC (Szabo 

and Blier, 2001).     
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 Recording of Pyramidal Neurons in the CA3 Region of the Hippocampus. The 

CA3 pyramidal neurons were recorded by positioning multibarrel micropipettes at the 

following coordinates (in mm from lambda): AP, 3.8–4.2; ML, 4.0–4.2; and DV, 3.5–4.5. 

Because most CA3 pyramidal neurons are not spontaneously active in chloral hydrate–

anesthetized rats, a small ejection current (+2 to -2 nA) was applied to the quisqualate 

barrel to activate them to be within their physiologic firing range (10–15 Hz) (Ranck, 

1975). Partial or full agonism of cariprazine on 5-HT1A receptors cannot be assessed in 

vivo using systemic injections. Therefore, it was assessed by comparing the inhibitory 

effect of 5-HT, per se, to the inhibitory effect of concomitant ejection of 5-HT and 

cariprazine, following restoration of the firing rate to the same level as before by 

increasing quisqualate ejection. In this paradigm, co-application of a partial agonist 

reduces the inhibitory effect of 5-HT, whereas co-application of a full agonist does not 

change the inhibitory effect of 5-HT, provided the ensuing concentration of the agent 

tested against 5-HT (cariprazine here) is initially sufficient to induce an inhibition of the 

firing activity of pyramidal neurons by at least 50% (Blier and de Montigny, 1990; Dong et 

al., 1998; Ghanbari et al., 2009 and 2010; Oosterhof et al., 2014). To ascertain whether 

the inhibitory effect of 5-HT and cariprazine was mediated by 5-HT1A receptors, the 

inhibitory effect of iontophoretic 5-HT and cariprazine application was compared before 

and after administration of the selective 5-HT1A receptor antagonist WAY100635.   

 Data Analysis. Electrophysiological recordings were made using Spike2 software 

version 6.17 (Cambridge Electronic Design, Cambridge, UK). Quantification of firing rates 

was performed using Spike2. When appropriate, groups were analyzed with a paired 

t-test or with repeated-measures analysis of variance (ANOVA) followed by a Holm-Sidak 
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method. All data were analyzed with GraphPad Prism version 5.01 (GraphPad Software, 

Inc., La Jolla, CA). Data are presented as mean ± standard error of the mean (S.E.M.); 

P < 0.05 was considered significant. 
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Results 

 Effect of Cariprazine on the Firing Activity of DRN 5-HT Neurons. The role of 

cariprazine in inhibiting the firing activity of 5-HT neuron via 5-HT1A autoreceptors was 

investigated in the DRN. Cumulative intravenous injections of 50 µg/kg of cariprazine 

decreased the firing activity of 5-HT neurons (n = 15 rats; 1 neuron per animal). This 

effect was subsequently reversed by the selective 5-HT1A receptor antagonist 

WAY100635, indicating that cariprazine was acting as an agonist at the 5-HT1A 

autoreceptors in vivo (Fig. 1A). 

 Although the response was dose-dependent for each neuron tested, the degree of 

firing inhibition for a given dose varied considerably. Indeed, the dose required to 

completely inhibit the firing rate ranged from a minimum of 150 µg/kg to a maximum of 

850 µg/kg (Fig. 1B). However, 80% of tested neurons (n = 12/15) were completely 

inhibited by cumulative intravenous doses of cariprazine within a range of 150–350 µg/kg. 

Upon detailed analysis, there was no correlation between the initial baseline firing rate of 

an individual 5-HT neuron and the cariprazine dose required to completely inhibit the firing 

(Fig. 1C). 

 

 Effect of Cariprazine on Postsynaptic 5-HT1A Receptors on Pyramidal Neurons 

in the Hippocampus. The effects of concomitant ejections of cariprazine and 5-HT in the 

CA3 region of the hippocampus were investigated to unravel the former compound’s 

effect on postsynaptic 5-HT1A receptors located on CA3 neurons. Microiontophoretic 

application of cariprazine significantly inhibited the firing activity of pyramidal neurons, as 

did 5-HT (Fig. 2A). After an intravenous injection of the selective 5-HT1A receptor 
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antagonist WAY100635 (50 μg/kg), the degree of inhibition induced by both cariprazine 

and 5-HT was significantly reduced (** P < 0.01, *** P < 0.001, respectively; 

Fig. 2B and C); This indicated that both compounds were acting mainly on postsynaptic 

5-HT1A receptors in CA3 pyramidal neurons.  

  There was no statistically significant difference between the degree of inhibition 

induced by 5-HT alone compared to when it was concomitantly applied with cariprazine 

(P > 0.05; Fig. 2), indicating that cariprazine acted as a full agonist at 5-HT1A receptors in 

vivo in the hippocampus. 

 

 Effect of Cariprazine on the Firing Activity of LC NE Neurons: Role of 5-HT2A 

Receptors and α2-adrenergic Receptors. The preferential 5-HT2A receptor agonist DOI 

(100 µg/kg, i.v.) induced near complete cessation of NE neuronal firing (Fig. 3A). 

Cumulative intravenous injections of 50 µg/kg of cariprazine restored the firing activity up 

to 70% of the baseline level, with an ED50 value of 65.5 µg/kg (Fig. 3; n =7). 

 As shown in Figure 4, in the presence of cariprazine, the effect of the 

α2-adrenoceptor agonist clonidine was compared to its effect under control conditions. 

After cariprazine pre-treatment, clonidine fully inhibited the firing activity of NE neurons 

upon dosing with two cumulative injections (10 µg/kg, i.v.) as it did in control conditions 

(Fig. 4). The effects of clonidine on NE neuronal firing were reversed by administration of 

the α2-adrenoceptor antagonist idazoxan (1 mg/kg, i.v.), indicating that cariprazine did not 

block α2-adrenoceptors (Fig. 4).   
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Discussion 

 In the DRN, cariprazine fully inhibited the firing activity of 5-HT neurons. This effect 

was reversed by the selective 5-HT1A receptor antagonist WAY100635, which indicated 

that cariprazine acted as an agonist in vivo at the 5-HT1A autoreceptors in this brain 

structure. Although cumulative doses inducing inhibition varied for each 5-HT neuron 

tested, the effect of cariprazine was dose-dependent for each neuron; nevertheless, the 

majority of neurons were inhibited by doses ranging between 150 µg/kg and 350 µg/kg. 

A potential role of α1-adrenoceptors in altering the responsiveness of 5-HT neurons to 

cariprazine, as is the case with olanzapine and clozapine (Sprouse et al., 1999), can be 

excluded since cariprazine has very weak or negligible affinity for these receptors (Kiss 

et al., 2010). It could be assumed that the varied neuronal responsiveness of 5-HT1A 

autoreceptors to cariprazine stems from differences in baseline firing of individual 

neurons, as a previous study suggested that 5-HT neurons with slow firing activity are 

more sensitive to 5-HT receptor agonists than neurons with faster discharge (Jacobs et 

al., 1983). In the present study, however, this variable response was not related to the 

baseline firing rate of individual neurons. Such variation in the degree of inhibition was 

unexpected because all selective 5-HT1A receptor agonists and other agents with 5-HT1A 

receptor partial agonist activity (eg, aripiprazole, brexpiprazole) tested in this paradigm 

yielded a tight dose-response relationship upon systemic administration, unlike 

cariprazine (Blier and Montigny, 1990; Dong et al., 1998; Rueter and Blier, 1999; Dahan 

et al., 2009; Oosterhof et al., 2014). Interestingly, both aripiprazole and brexpiprazole 

display greater in vitro affinity for 5-HT1A receptors than cariprazine but were less potent 

than cariprazine in activating the 5-HT1A autoreceptors (Dahan et al., 2009; Oosterhof et 
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al., 2014; Citrome et al., 2015). Therefore, a potential explanation for the wide range of 

cariprazine doses needed to inhibit 5-HT neurons may be due to the balance of the 

inhibitory effect of 5-HT1A receptor activation versus the excitatory action of D2-like 

receptors for different 5-HT neurons (Chernoloz et al., 2009). Indeed, 5-HT neurons are 

endowed with D2-like receptors that mediate an excitatory influence on neuronal firing 

(Aman et al., 2007; Katz et al., 2010). This explanation can be envisioned if it is assumed 

that the 5- to 8-fold greater binding affinity and selectivity of cariprazine for D3 versus D2 

receptors, compared to aripiprazole and brexpiprazole (which show a lower affinity for D3 

receptors and a higher selectivity for D2 versus D3 receptors than cariprazine), exerts a 

larger excitatory effect on some 5-HT neurons. Interestingly, D3 receptor expression has 

been demonstrated by binding assays in the median and dorsal raphe nuclei of the 

midbrain (Stanwood et al., 2000), and thus may also influence 5-HT neuronal firing in this 

region. However, further studies using selective tools are needed to explore the specific 

role of the D3 receptor on 5-HT neuronal activity. At this point, it is unclear whether the 

variability in the response of 5-HT neurons to cariprazine translates into a functional 

difference compared, for example, to other DA receptor partial agonists such as 

brexpiprazole and aripiprazole. Nevertheless, although cariprazine and aripiprazole had 

a superior effect on mood symptoms when compared to placebo, the magnitude of their 

effect appears to be similar in patients with schizophrenia (Durgam et al., 2015). 

 In the hippocampus, cariprazine did not reduce the effectiveness of the endogenous 

ligand 5-HT at postsynaptic 5-HT1A receptors when the two compounds were applied 

concomitantly. This indicates that cariprazine acted as a full 5-HT1A receptor agonist in 

this brain region. Similar to cariprazine, brexpiprazole has also been shown to act as a 
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full agonist at the postsynaptic 5-HT1A receptors in the hippocampus (Oosterhof et al., 

2014). It is also important to note that agents acting on 5-HT1A receptors can have 

heterogeneous effects at 5-HT1A receptors in the different brain areas. For instance, 

studies of the 5-HT1A receptor agonist/5-HT2A receptor antagonist flibanserin revealed 

that it acts as a full agonist at presynaptic 5-HT1A receptors in the DRN and at 

postsynaptic 5-HT1A receptors in the medial prefrontal cortex (mPFC), but as a partial 

agonist at the postsynaptic 5-HT1A receptors in the CA3 region of the hippocampus 

(Reuter and Blier, 1999). Moreover, it was reported that selective activation of these 

postsynaptic receptors enhances 5-HT transmission and DA release in the mPFC (Chung 

et al., 2004). Indeed, activation of 5-HT1A receptors (by 5-HT1A receptor agonists) was 

shown to increase DA release in the mPFC (Ichikawa et al., 2001; Diaz-Mataix et al., 

2005). 

  A previous study has shown that both aripiprazole and cariprazine decreased 5-HT 

turnover rate in mouse prefrontal cortex, through an action on 5-HT1A receptors (Kiss et 

al., 2010). In various in vitro assays, cariprazine was shown to act either as a partial 

agonist (Kiss et al., 2010) or full agonist depending on the assay system used. The 

present in vivo study found that cariprazine acted rather as a full agonist at 5-HT1A 

receptors controlling the firing activity of pyramidal neurons in the hippocampus. It has 

been suggested that a partial agonist can behave differently depending on the level of 

receptor reserve; for example, the partial agonist may behave as expected or even as an 

antagonist in tissue with low or negligible levels of receptor reserve, but in the presence 

of high levels of receptor reserve, that same partial agonist may behave like a full agonist 

instead (Kenakin, 1987). This is, however, not the case with the in vivo 
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electrophysiological response reported herein because, with the approach used in this 

study, both partial and full 5-HT1A receptor agonists have been identified in the DRN and 

the hippocampus (Blier and de Montigny 1990; Dong et al, 1998; Ghanbari et al., 2009 

and 2010; Oosterhof et al., 2014). It is nevertheless possible that these responses are 

partially dependent on the coupling between specific 5-HT1A receptors and the signal 

transduction mediating their response (Valdizán et al., 2010). Indeed, in the 

hippocampus, 5-HT1A receptors are coupled to adenylyl cyclase but also to potassium 

channels, the latter being involved in the electrophysiological responses measured in this 

study, and both of which have displayed differential properties in previous studies (Yocca 

et al., 1992; Blier et al., 1993). 

 Cariprazine acted as a potent antagonist at 5-HT2A receptors on LC NE neurons, 

as it reversed the inhibitory effect of the preferential 5-HT2A receptor agonist DOI. These 

receptors are located on GABA neurons that control the activity of NE neurons (Haddjeri 

et al., 1997; Szabo and Blier, 2002). Interestingly, administration of YM992 (a 5-HT2A 

receptor antagonist and an inhibitor of 5-HT reuptake) or blockade of 5-HT2A receptors by 

the selective 5-HT2A receptor antagonist MDL100907 during treatment with the SSRI 

citalopram was shown to synergistically increase cortical NE levels, which were measured 

by microdialysis (Hatanaka et al., 2000). Furthermore, blockade of 5-HT2A receptors by 

various medications, such as risperidone, aripiprazole, and olanzapine, reverses the 

inhibitory effect of SSRIs on LC NE neurons (Seager et al., 2004; Dremencov et al., 2007; 

Chernoloz et al., 2009). Despite the lower in vitro binding affinity of cariprazine for 5-HT2A 

receptors when compared to other drugs commonly used to treat psychosis and mania 
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(Ghanbari et al., 2009; Oosterhof et al., 2014), its in vivo 5-HT2A receptor antagonist 

potency for reversing the inhibitory effect of DOI was similar to those medications. 

 The α2-adrenergic autoreceptors were not blocked by cariprazine in the present 

study. Indeed, cariprazine pre-treatment did not result in dampening of the inhibitory 

action of the α2-adrenoceptor agonist clonidine on NE neurons; this is consistent with its 

weak or negligible affinity for these receptors as determined by in vitro binding assays 

(Kiss et al., 2010). It is interesting to note that this lack of effect on α2-adrenergic receptors 

differs from other medications used to treat psychosis and/or mania (Dremencov et al., 

2007; Ghanbari et al., 2009; Oosterhof et al., 2014). 

 It is important to consider whether the doses of cariprazine used in the present 

experiments produced plasma levels within the range of those achieved in humans. 

Because 5-HT2A antagonism is an important feature of this class of medication, both in 

mood disorders and schizophrenia, the cariprazine concentrations that reversed the effect 

of the 5-HT2A receptor agonist DOI by cariprazine in the LC were used for comparison 

with human plasma concentrations. Given that a dose of 1 mg/kg of cariprazine (i.v.) 

results in a peak plasma level of 240 ng/mL in rats (Gyertyan et al., 2011), it can be 

extrapolated that the 0.2 mg/kg dose of cariprazine necessary to reverse the suppression 

of firing by DOI should have produced a level of 48 ng/mL in plasma. This is consistent 

with the 50 ng/mL plasma level of cariprazine active moieties reported in patients 

receiving cariprazine at 3 mg/day (Nakamura et al., 2016).       

 In this study, in agreement with its in vitro affinity, cariprazine showed acute in vivo 

activity with an effective agonism at 5-HT1A receptors and antagonism at 5-HT2A 

receptors. Agonism at 5-HT1A receptors has been shown to play a key role in the control 
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of mood and cognition (Newman-Tancredi, 2010), while antagonism at 5-HT2A receptors 

is thought to play a role in modulating the NE system. Hence, it is possible that the 

activation of 5-HT1A receptors and the blockade of 5-HT2A receptors by cariprazine may 

contribute to its beneficial therapeutic action seen in MDD (Durgam et al., 2016a) and 

bipolar depression (Durgam et al., 2016b).  
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Legends for Figures 

Fig. 1. (A) Integrated firing rate histogram of a single 5-HT neuron showing its response 

to four cumulative intravenous injections of cariprazine and the subsequent reversal with 

an intravenous dose of the selective 5-HT1A antagonist WAY100635. (B) Relationship 

between the number of 5-HT neurons showing a 100% inhibition  

of firing and the dose of cariprazine necessary to achieve the complete suppression of 

firing. One neuron was recorded per rat. (C) No significant correlation between the degree 

of firing activity of 5-HT neurons and the dose of cariprazine necessary to achieve 

complete inhibition.  

Fig. 2. (A) Integrated firing rate histogram of a single pyramidal neuron in the 

hippocampus, showing inhibition by cariprazine and 5-HT. Note that a one-way ANOVA 

with repeated measures showed that subsequent full inhibition by 5-HT was not 

significantly different when concomitantly administered with cariprazine. (B and C) Both 

inhibitions induced by cariprazine and 5-HT were antagonized by the intravenous injection 

of the selective 5-HT1A receptor antagonist WAY100635. The number of neurons and 

animals are presented in the histograms; data were analyzed with a paired t-test and are 

presented as mean ± S.E.M. ** P < 0.01; *** P < 0.001 for effect of WAY100635 

administration on the inhibitory effect of cariprazine and 5-HT.  

Fig. 3. (A) Integrated firing rate histogram showing DOI-induced inhibition of NE neuronal 

firing by the preferential 5-HT2A receptor agonist DOI and its reversal by cumulative doses 

of cariprazine. Note subsequent inhibition by clonidine and reversal by idazoxan. 

(B) Dose-response curve showing the percentage reversal of DOI-induced inhibition 
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relative to baseline in NE neurons by cumulative doses of cariprazine (n = 7, 1 neuron 

was recorded per rat).  

Fig. 4. Representative integrated firing rate histograms illustrating inhibition of NE neuron 

firing activity by clonidine (A), and the lack of effect of cariprazine on this activity following 

pre-treatment with cariprazine (B and C). Note that this inhibition is reversed by the 

intravenous injection of the α2-adrenoceptor idazoxan. 
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Figures 

Figure 1. 
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Figure 2. 
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Figure 3. 

 

 

 

Figure 4. 
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