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Abstract 

Heteromeric α3β4 nAChRs are pentameric ligand-gated cation channels that include at 

least two α3 and at least two β4 subunits. They have functions in peripheral tissue, 

peripheral and central nervous systems. We examined the effects of chronic treatment 

with menthol, a major flavor additive in tobacco cigarettes and in electronic nicotine 

delivery systems, on mouse α3β4 nAChRs transiently transfected into neuroblastoma 

2a (Neuro-2a) cells. Chronic menthol treatment at 500 nM, near the estimated menthol 

concentration in the brain following cigarette smoking, altered neither the [ACh]-

response relationship nor Zn2+ sensitivity of ACh-evoked currents, suggesting that 

menthol does not change α3β4 nAChR subunit stoichiometry. Chronic menthol 

treatment failed to change the current density (peak current amplitude/cell capacitance) 

of 100 µM ACh-evoked currents. Chronic menthol treatment accelerated desensitization 

of 100 µM and 200 µM ACh-evoked currents. Chronic nicotine treatment (250 µM) 

decreased ACh-induced currents, and we found no additional effect of including chronic 

menthol. These data contrast with previously reported, marked effects of chronic 

menthol on β2* nAChRs studied in the same expression system. Mechanistically, the 

data support the emerging interpretation that both chronic menthol and chronic nicotine 

act on nAChRs in the early exocytotic pathway, and that this pathway does not present 

a rate-limiting step to the export of α3β4 nAChRs; these nAChRs include endoplasmic 

reticulum (ER) export motifs but not ER retention motifs. Previous reports show that 

smoking mentholated cigarettes enhances tobacco addiction; but our results show that 

this effect is unlikely to arise via menthol actions on α3β4 nAChRs.  
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Introduction 

Smoking is the leading cause of preventable death worldwide (CDC, 2018), and is 

responsible for ~6 million deaths annually (WHO, 2015). Nicotine causes smoking 

addiction through binding to pentameric ligand-gated nicotinic acetylcholine receptors 

(nAChRs). Chronic exposure to nM or µM concentrations causes upregulation of 

nAChRs at the plasma membrane (PM). This upregulation occurs partially because 

nicotine enters the endoplasmic reticulum (ER), binds there to nascent α4β2 nAChRs, 

acts as a posttranslational pharmacological chaperone for these nAChRs, and 

consequently increases ER exit of these nAChRs via posttranslational pharmacological 

chaperoning (Henderson and Lester, 2015; Srinivasan et al., 2012b). Nicotine 

upregulates nAChR α4 or β2 protein levels without changing their mRNA levels 

(Buisson and Bertrand, 2001; Flores et al., 1992; Marks et al., 1992; Srinivasan et al., 

2011).  

 

Compared with smokers of non-mentholated cigarettes, smokers of mentholated 

cigarettes have higher upregulation of α4β2-containing nAChR densities in the brain 

(Brody et al., 2013). There were reduced rates of smoking cessation among smokers of 

menthol- compared with non-menthol-containing cigarettes at both 4-week and 6-month 

check-ups (Gandhi et al., 2009).  

 

There is a molecular explanation from mouse studies for the addictive properties of 

nanomolar range menthol treatment (Henderson et al., 2017; Henderson et al., 2016). 

Chronic treatment (~24 hours [hr]) with menthol alone upregulates α4 and α6 nAChR 
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subunits selectively in midbrain dopaminergic neurons in the ventral tegmental area 

(VTA) and substantia nigra pars compacta (SNc) (Henderson et al., 2016), whereas 

nicotine alone upregulates nAChR α4 number in GABAergic neurons of the substantia 

nigra pars reticulata (SNr) (Nashmi and Lester, 2007; Xiao et al., 2009). Furthermore, 

chronic menthol treatment alone shifted stoichiometry towards lower sensitivity 

(α4)3(β2)2 and α6β2(non-β3) from higher sensitivity (α4)2(β2)3 and α6β2β3 nAChR 

populations, respectively (Henderson et al., 2016). While chronic menthol treatment 

alone prevented nicotine reward-related behavior (Henderson et al., 2016), combined 

chronic menthol and nicotine treatment further enhanced reward-related behavior 

caused by chronic nicotine alone (Henderson et al., 2017). Additionally, chronic menthol 

treatment enhances nicotine-induced upregulation of α4* and α4α6* nAChR (Henderson 

et al., 2017). 

 

The human α3-, α5-, β4-nAChR subunit gene cluster located on chromosome locus 

15q24–25.1 is linked to the risk of nicotine dependence and smoking-associated 

diseases, as well as to lung cancer among smokers (Bierut et al., 2008; Chen et al., 

2009; Saccone et al., 2007; Spitz et al., 2008; The Tobacco and Genetics Consortium, 

2010). In a meta-analysis of 16 studies, 130 single nucleotide polymorphisms (SNPs) in 

15q24–25.1 are associated with the number of cigarettes smoked a day, with 

rs1051730 in CHRNA3 having the strongest association (The Tobacco and Genetics 

Consortium, 2010). Furthermore, subunits from the α3-, α5-, β4-nAChR subunit gene 

cluster are expressed in the medial habenula (MhB)-interpeduncular (IPN) tract 

(Dineley-Miller and Patrick, 1992; Grady et al., 2009; Marks et al., 1992; Sheffield et al., 
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2000; Shih et al., 2014; Whiteaker et al., 2000; Whiteaker et al., 2002), and contribute to 

nicotine dependence by influencing nicotine aversion in the MHb-IPN midbrain pathway 

(Fowler et al., 2011; Frahm et al., 2011). Compared with in patients who do not have 

lung cancer, α3 and β4 nAChR-encoding genes are overexpressed in small-cell lung 

carcinoma of lung cancer patients (Improgo et al., 2010). Agonist activation of α3β4 

nAChRs can promote viability of these lung carcinoma cells, whereas antagonism or 

knockdown of α3β4 nAChRs reduces viability of these cells (Improgo et al., 2013). 

 

Similar to the inhibitory effects at human α4β2 nAChRs (Hans et al., 2012), (-)-menthol, 

when co-applied with 30 µM ACh, is a noncompetitive antagonist at human nAChR 

α3β4 (IC50 = 100 µM), while also causing faster desensitization of ACh-evoked currents 

(Ton et al., 2015). It is of interest to observe chronic (~24 hr) effects of a much lower, 

pharmacologically relevant concentration of menthol on α3β4 nAChRs, because the 

estimated concentration of menthol in a smoker’s brain is 0.5 – 2.5 µM (Henderson et 

al., 2017; Henderson et al., 2016). 

 

We examined effects of chronic menthol (500 nM, 24 – 30 hr) treatment alone and in 

combination with chronic nicotine on the two potential stoichiometries, (α3)2(β4)3 and 

(α3)3(β4)2, and on functional plasma membrane (PM) levels of mouse α3β4 nAChRs. 

The efficiency of assembly and trafficking of nAChR varies depending on the receptor 

subtypes and the cell system in which they are expressed (Crespi et al., 2018a). These 

nAChRs were transiently transfected in mouse neuroblastoma-2a (Neuro-2a) cells to 
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determine whether α3β4 nAChRs mediate the addictive effects of menthol in 

mentholated cigarettes.  
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Materials and Methods  
 

Reagents 

(-)-Menthol (product #M2780), (±)-menthol (product #63670), (+)-menthol (product 

#224464), (-)-nicotine hydrogen tartrate (product #SML 1236), and acetylcholine 

chloride (product #A6625) were obtained from Sigma-Aldrich (St. Louis, MO).  

 

Menthol dose selection has been discussed previously and is based on an analysis 

estimating the concentration of menthol in the brain following a long-term exposure 

paradigm, as well as on preliminary concentration-response studies (Henderson et al., 

2017; Henderson et al., 2016). 

 

Neuro-2a cell culture and transient transfection  

We used mouse Neuro-2a cells (American Type Culture Collection, Manassas, VA) for 

our experiments. Passage 3 to 20 Neuro-2a cells (50,000) were plated onto sterilized 

12-mm diameter glass coverslips (Deckgläser, Sondheim, Germany), which were 

placed in 35-mm culture dishes, and cultured in a humidified incubator (37°C; 95% air, 5% 

CO2). Neuro-2a cells were incubated in full cell culture medium containing Eagle's 

minimum essential medium (EMEM), 10% fetal bovine serum (FBS), 100 units/mL of 

penicillin, and 100 µg/mL of streptomycin. 

 

For both Zn2+-inhibition experiments and [ACh]—response experiments (Figures 1-3 

and Tables 1-3), 35-mm culture dishes containing pre-plated Neuro-2a cells were 

transfected with 125 ng of each nAChR subunit cDNA (mouse α3-green fluorescent 
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protein [GFP] and mouse wildtype [WT] β4) in the pCDNA3.1 vector. These constructs 

were used in (Shih et al., 2014) and contain a GFP tag within the M3-M4 loop of mouse 

α3 nAChR. Plasmids were mixed with 250 µl of Opti-MEM (Thermo Fisher Scientific Inc, 

Chino, CA) and Lipofectamine 2000 (Thermo Fisher Scientific Inc, Chino, CA) was 

separately mixed with 250 µl of Opti-MEM. After 5 min at 24 °C, DNA- and 

Lipofectamine 2000-containing Opti-MEM solutions were mixed together and incubated 

for 25 min at 24 °C. The solutions were then added to 35-mm culture dishes containing 

pre-plated Neuro-2a cells, which were then placed in the humidified incubator for 24 hr. 

The Opti-MEM was removed and replaced with full cell culture media containing either 

500 nM (-)-menthol, 500 nM (+)-menthol, 500 nM (±)-menthol, 250 µM (-)-nicotine, 

combined 500 nM (-)-menthol and 250 µM (-)-nicotine, or neither menthol nor nicotine 

(control treatment) for 24 – 30 hr. Filter (0.2 µm)-sterilized menthol and nicotine stock 

solutions were used to make 500 nM menthol and/or 250 µM nicotine.  

  

Patch-clamp electrophysiology 

Neuro-2a cells were visualized with an inverted microscope (IX71, Olympus, Tokyo, 

Japan) and green illumination (for visualizing fluorescent proteins). Whole-cell patch-

clamp techniques were used with an Axopatch 200B amplifier (Molecular Devices Axon 

Instruments, Sunnyvale, CA), Digidata 1440A analog-to-digital converters (Molecular 

Devices Axon Instruments, Sunnyvale, CA), and pClamp 10.3 software (Molecular 

Devices Axon Instruments, Sunnyvale, CA). Data were sampled at 10 kHz and low pass 

Bessel filtered at 2 kHz. Patch electrodes had a resistance of 2 – 6 MΩ when filled with 

intracellular solution. Series resistance (Rs) was compensated by 85 – 95% throughout 
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whole-cell patch-clamp recording, and data were discarded if the Rs exceeded 25 MΩ 

at the start or at the end of the recording. 

 

Intracellular and extracellular solutions were used as in Henderson et al., (2016). The 

intracellular solution was as follows (in mM): 135 K-gluconate, 5 KCl, 5 EGTA, 0.5 CaCl2, 

10 HEPES, 2 Mg-ATP, and 0.1 GTP. The pH of the intracellular solution was adjusted 

to 7.2 with Tris-base, and osmolarity was adjusted to 298 mOsm with sucrose. Just prior 

to gigaseal formation, the junction potential between the patch pipette and bath 

solutions was nulled. Chronic menthol and/or nicotine treatments were 24 - 30 hr long 

and began 24 hr after transfection. All recordings were performed 47 - 58 hr following 

the start of transfection (average of 51.75 – 52.75 hr across all treatments, Tables 1, 2, 

and 3).  

 

Acetylcholine (ACh) was dissolved in extracellular solution containing (in mM) the 

following: 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose (280 - 320 

mOsm, pH set to 7.3 with Tris-base). The 1 mM Zn2+ solutions were made from zinc 

acetate stock solutions, as in a previous study that tested Zn2+ sensitivity of rat α3β4 

nAChR (Hsiao et al., 2001).  

 

For both [ACh]–response and Zn2+-inhibition experiments, ACh and/or 1 mM Zn2+ were 

applied by local laminar flow using an Octaflow II perfusion system (0.5 s to 5 s; 6 psi; 

Octaflow micromanifold tip [200 µm internal diameter] is located ~1.0 mm from Neuro-

2a cell) (ALA Scientific Instruments, Farmingdale, NY) onto voltage-clamped Neuro-2a 
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cells (holding potential of -65 mV, after correcting for a junction potential of -16 mV). 

Actual current growth and decay times exceeded our calculated solution exchange time 

of ~18 ms, probably because of deviations from laminar-flow. Extracellular solution was 

perfused over the entire recording chamber at ~2.7 chamber volumes/min, while 

extracellular solution was also continuously perfused by local laminar-flow at 2 psi (for 

30 s to 5 minutes) from the Octaflow II perfusion system when ACh and/or Zn2+ were 

not being perfused. In the experiments, the nicotine- or menthol-containing media was 

replaced by several washes with extracellular solution free of both nicotine and menthol, 

over an average period of 1.7 and 1.8 hr, respectively (minimum of 30 min). In 

experiments on Neuro-2a and other cultured mammalian cells, within 2 s after nicotine 

is removed from the extracellular solution, intracellular [nicotine] falls to undetectable 

levels (Shivange et al., submitted, 2019). This rules out retention of nicotine 

intracellularly (Jia et al., 2003). We estimate that extracellular [nicotine] or [menthol] 

decreased to < 1 fM. Recordings then commenced. 

 

For [ACh]-response experiments, to avoid receptor desensitization from repetitive ACh 

application, we applied ACh at up to 5 min intervals. There was no statistically 

significant current run down in n≥4 Neuro-2a cells transfected with mouse α3-GFP β4 

nAChRs with three ACh applications at (duration of ACh application): 10 µM (5 s) at 2 

min intervals; 50 µM (5 s) at 3 min intervals; 100 µM (2 s) at 3 min intervals; 500 µM (1 s) 

at 5 min intervals; and 1000 µM (0.5 s) at 5 min intervals (p > 0.05, one-way ANOVA 

with post-hoc Tukey honestly significant difference [HSD] test). Also, current run-down 

caused by 1 µM ACh applied for 5 s duration was ruled out by observing no significant 
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difference between responses of 100 µM ACh applied 3 min before and 30 s after this 1 

µM ACh application (p > 0.05, two-tailed t-test). Therefore, when collecting [ACh]-

response data, ACh was applied at concentrations, durations, and time intervals that do 

not cause significant current rundown (i.e., 200 µM ACh was applied for 1 s and allowed 

to recover for 5 min before the next ACh application, because 500 µM ACh applied for 1 

s at 5 min intervals did not cause current run down as explained earlier). Up to six out of 

the nine ACh concentrations (1 µM, 3 µM, 10 µM, 20 µM, 50 µM, 100 µM, 200 µM, 500 

µM, and 1000 µM ACh) were applied to the cell in each recording session, and 100 µM 

ACh was applied twice in each recording session as a measure of current run-down. 

Peak current amplitudes were normalized to 1 for the maximum response for each 

recording session. The ACh concentrations were applied in a different order when 

recording at different cells. Data from different recording sessions were combined to 

form mean [ACh]-response curves for different chronic treatments. [ACh]-response data 

were fitted in Origin 2018 software (OriginLab Corportion, Northampton, MA) by: 

Eq. 1 

! =  !1 +  (!2− !1)/(1 +  10^((!"#$0− !) ∗ !)) 

where: y = response; A1 = minimum response (usually near 0); A2 = maximum 

response (near to 1); p = Hill co-efficient; x = [ACh] 

 

To compare desensitization between control and 500 nM chronic (-)-menthol treatments, 

we calculated the % current decay from the ACh-evoked peak at 1700 ms and 650 ms 

from the start of the ACh-evoked growth phase for 100 µM ACh and 200 µM ACh 

applications, respectively. 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114769

 at A
SPE

T
 Journals on M

arch 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #114769 
	

 14 

 

For Zn2+-inhibition experiments, 100 µM ACh (with or without 1 mM Zn2+) was applied 

for 1 s at 2.5 min intervals, and 1 mM Zn2+ and 100 µM ACh were co-applied in between 

100 µM ACh only applications. Immediately prior to co-application of 1 mM Zn2+ and 

100 µM ACh, 1 mM Zn2+ (without ACh) was applied to the cell for 2 s by local laminar-

flow at 6 psi from the Octaflow II perfusion system. For each Zn2+-inhibition experiment, 

there were four 100 µM ACh only applications and three 1 mM Zn2+ and 100 µM ACh 

co-applications. The % Zn2+-inhibition for each experiment was calculated by: 

Eq. 2 

100− !
! ∗ 100  

where: x = mean 100 µM ACh peak current amplitude in the presence of 1 mM Zn2+, 

and y = mean 100 µM ACh peak current amplitude in the absence of 1 mM Zn2+. 

 

For both [ACh]-response and Zn2+-inhibition experiments, data were discarded for 

individual recordings showing substantial current run-down (a > 2 fold difference in 

current amplitude evoked by 100 µM ACh applications). Neither menthol nor nicotine 

were present during any ACh applications in this study. The chronic nicotine and 

menthol treatments end at an average of 1.7 hr and 1.8 hr, respectively, before the cell 

was recorded. 

 

Data analyses 

Clampfit 10.3 (Molecular Devices Axon Instruments, Sunnyvale, CA) was used for 

analyzing peak current amplitudes. In our figures, we moved electrophysiological traces 
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along the time axis to account for variations in flow rates from the Octaflow manifold. 

Because peak inward current amplitudes of transfected α3β4 nAChRs in our dataset 

and published data often exceed –4 nA (Krashia et al., 2010), recorded peak current 

amplitudes were further corrected for underestimation due to uncompensated Rs (5 – 

15%) by assuming a linear current-voltage relationship and a reversal potential of 0 mV. 

Uncompensated Rs was multiplied by current amplitude to calculate the shift in Vm. The 

shift in Vm allowed us to estimate the size of underestimated current amplitudes ([shift in 

Vm/holding Vm of -65 mV] X current amplitude). Bar graphs, [ACh]-response curve fitting, 

and average 100 µM ACh and 200 µM ACh waveforms were completed and plotted in 

Origin 2018 (OriginLab Corportion, Northampton, MA). We performed statistical tests 

(one-way ANOVA with post-hoc Tukey HSD test and two-tailed t-tests) using Origin 

2018 software (OriginLab Corportion, Northampton, MA) and/or Microsoft Excel 

(Redmond, WA). Mean ± S.E. values are represented in bar charts, average waveforms, 

and tables (Figures 1-3, and Tables 1-3). 
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Results  

 

Chronic menthol treatment does not alter the stoichiometry of functional mouse 

α3β4 nAChRs 

 

To help understand how menthol in mentholated cigarettes may influence nicotine 

dependence, we studied how the functional characteristics of mouse α3β4 nAChRs are 

altered by chronic (24 – 30 hr) 500 nM menthol treatment. In Neuro-2a cells transiently 

transfected with mouse α3-GFP and β4 nAChR subunits at a 1:1 ratio, we studied 

whole-cell patch clamp currents. This Neuro-2a cell system has proven amenable for 

studies of chronic nicotine and/or chronic menthol treatment effects on α4β2 and α6β2 

nAChRs (Henderson and Lester, 2015; Henderson et al., 2014; Henderson et al., 2017; 

Srinivasan et al., 2011; Srinivasan et al., 2012). Some clonal cell types express 

transfected membrane proteins at levels so high that aspects of subunit assembly, 

membrane tracking, and turnover become limiting, distorting regulatory processes that 

occur in neurons (Davila-Garcia et al., 1999; Lomazzo et al., 2011; Xiao and Kellar, 

2004). Neuro-2a cells have more modest expression levels than various HEK293-

derived cell lines, allowing good control of membrane proteins (Moss et al., 2009). In 

previous studies of Neuro-2a cells transfected with α4β2 and α6β2 nAChRs, varying the 

ratio of transfected subunits does affect the stoichiometry of the nAChRs (Srinivasan et 

al., 2012a; Fox et al., 2015); and exposure to chronic nicotine does upregulate nAChRs 

(Srinivasan et al., 2011; Srinivasan et al., 2012a; Srinivasan et al., 2012b; Fox et al., 
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2015); and exposure to menthol alone also upregulates nAChRs (Henderson et al., 

2016).  

 

From our experiments, the EC50 for ACh is 99 µM (n = 6 - 13) (Figures 1A and B). Our 

EC50 is similar to the EC50 of 92 µM for ACh at Xenopus oocytes injected with mouse 

α3-GFP and β4 nAChR-encoding cRNAs (obtained from the same cDNA constructs 

used for our experiments) at a 2:3 ratio, respectively (Shih et al., 2014). Furthermore, 

our EC50 value for ACh at mouse α3-GFP and β4 nAChRs transfected in Neuro-2a cells 

is consistent with EC50 values for ACh at WT and modified mouse, rat, and human α3 

and β4 nAChR encoding cRNAs injected into oocytes, as well as for human WT α3 and 

β4 nAChRs transfected at a 1:1 ratio in HEK293 cells (Drenan et al., 2008; Grishin et al., 

2010; Krashia et al., 2010; Wang et al., 1998). 

 

Zn2+-inhibition of ACh-evoked currents at mouse α3-GFP β4 nAChRs following chronic 

menthol and/or nicotine treatment 

Because our ACh-induced currents in transfected mouse α3β4 nAChRs and transfected 

human nAChRs α3β4s have similar EC50 values and waveforms as previously published 

data (Krashia et al., 2010), we hypothesized that we would find similar effects of Zn2+ on 

100 µM ACh at mouse and human nAChRs α3β4s. We employed Zn2+ to assess 

stoichiometry. Moreover, synaptic vesicles of forebrain neurons contain Zn2+ 

(Frederickson et al., 2000). Zn2+ is released from neurons calcium- and depolarization-

dependently, reaching estimated transient concentrations of almost 300 µM (Assaf and 

Chung, 1984; Howell et al., 1984). 
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Krashia et al. assessed the effects of Zn2+ on ACh-evoked currents at human α3β4 

nAChRs of different stoichiometries (Krashia et al., 2010). Krashia et al. showed that a 

wide range of [Zn2+] differentially affected the two α3β4 nAChR stoichiometries. Within 

this range, 1 mM Zn2+ actually produced opposite effects on ACh-evoked currents at the 

two populations, enhancing (α3)2(β4)3 but inhibiting (α3)3(β4)2 (Krashia et al., 2010). We 

therefore chose 1 mM Zn2+ as a sensitive way to determine mouse α3β4 nAChR 

stoichiometry changes by chronic drug treatments. If chronic menthol treatment (with or 

without co-chronic nicotine treatment) shifts towards the (α3)3(β4)2 stoichiometry, we 

expect greater levels of inhibition by 1 mM Zn2+ compared with no chronic menthol 

treatment (with or without co-chronic nicotine treatment, respectively). Mazzo and 

colleagues found, using western blotting with co-immunoprecipitation of total cell lysates, 

that 1 mM nicotine treatment for 24 hr causes a shift (62%) toward (α3)2(β4)3 from the 

(α3)3(β4)2 stoichiometry in transfected HeLa cells (Mazzo et al., 2013). We used a lower 

concentration of 250 µM nicotine in our experiments to avoid potential non-specific 

effects caused by alkaline pH shifts with 1 mM nicotine. Nicotine concentrations of 

similar range (hundreds of µM) exist transiently in the airway surface liquid of smokers 

(Clunes et al., 2008; Mazzo et al., 2013); and α3β4 nAChRs may enhance the growth of 

lung cancers (Improgo et al., 2010; Improgo et al., 2013). Therefore, the nicotine 

concentration we study in our experiments has pharmacological relevance. Neither of 

the chronic treatments significantly changed the cell capacitance relative to control 

treatment (p > 0.05 for one-way ANOVA with post-hoc Tukey HSD test) (Table 1). 
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In the absence of nicotine, chronic 500 nM (-)-menthol treatment for 24 – 30 hr did not 

significantly alter the percentage of 1 mM Zn2+-inhibition of 100 µM ACh-evoked 

currents compared with control treatment (no menthol and no nicotine) (p > 0.05 for 

one-way ANOVA with post-hoc Tukey HSD test, 48.5 ± 4.8% vs. 50.1 ± 6.5%, n = 16 

and 14, respectively) (Figures 1C and D, Table 1). In addition, neither chronic 250 µM 

nicotine alone (48.7 ± 6.1%, n = 19), nor combined chronic 250 µM nicotine and 500 nM 

(-)-menthol (55.4 ± 5.3%, n = 20) treatments significantly altered the level of 1 mM Zn2+-

inhibition of 100 µM ACh-evoked current compared with control treatment (p > 0.05 for 

both treatments for one-way ANOVA with post-hoc Tukey HSD test) (Figures 1C and D, 

Table 1). This result indicates that compared with control treatment, neither of the 

chronic treatments ([-]-menthol alone, nicotine alone, or [-]-menthol and nicotine 

combined) changes the stoichiometry of mouse α3β4 nAChRs. Also, combined chronic 

250 µM nicotine and 500 nM (-)-menthol treatment did not significantly alter the level of 

1 mM Zn2+-inhibition of 100 µM ACh-evoked current compared with chronic 250 µM 

nicotine treatment alone (55.4 ± 5.3% vs. 48.7 ± 6.1%; p,> 0.05 for one-way ANOVA 

with post-hoc Tukey HSD test; n = 20 and 19, respectively) (Figure 1C and D, Table 1). 

This result emphasizes that chronic 500 nM (-)-menthol does not influence 1 mM Zn2+ 

sensitivity of ACh-evoked currents at mouse α3β4 nAChRs. Because these control, 

chronically menthol-treated, and/or chronically nicotine-treated α3β4 nAChRs all 

showed > 45% inhibition by 1 mM Zn2+ (Figure 1C and D, Table 1), we suggest that 

most mouse α3β4 nAChRs in these transfected Neuro-2a cells possess the (α3)3(β4)2 

stoichiometry. If these α3β4 nAChRs under the different chronic treatments were 

predominantly in the (α3)2(β4)3 stoichiometry, ACh-evoked currents would show 
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potentiation in the presence of 1 mM Zn2+ (Krashia et al., 2010). Our suggestion is also 

consistent with Krashia et al. strongly suggesting that HEK293 cells transfected with α3 

and β4 nAChR subunits at a 1:1 ratio predominantly possess the (α3)3(β4)2 

stoichiometry (Krashia et al., 2010). Krashia et al. suggested this predominant 

(α3)3(β4)2 stoichiometry after observing greater shifts in the EC50 of ACh in patch-clamp 

recorded transfected cells containing mutant α3 and WT β4 compared with cells 

containing WT α3 and mutant β4 nAChR constructs (Krashia et al., 2010). 

 

 [ACh]-response at mouse α3-GFP β4 nAChRs following chronic menthol treatment 

As another experiment to probe stoichiometry changes by chronic menthol, we 

assessed the [ACh]-response relationship at mouse α3-GFP β4 nAChRs following 

chronic menthol treatment. Previous studies have shown how populations of different 

stoichiometry vary in the ACh EC50 by 2 – 3 fold at human α3β4 nAChRs (Krashia et al., 

2010) and 7 – 8 fold at rat α3β4 nAChRs (Grishin et al., 2010). Because Krashia et al. 

(2010) found that Zn2+ inhibition is sensitive to α3β4 nAChR stoichiometry, our previous 

Zn2+-inhibition experiments do present strong evidence that chronic exposure to (-)-

menthol and/or nicotine fails to affect α3β4 nAChR stoichiometry. However, we recently 

reported that (-)-menthol and (+)-menthol have markedly different effects in chronic 

exposure at α4β2 nAChRs (Henderson et al., eNeuro in press, 2019). Furthermore, 

cigarette manufacturers could consider responding to possible governmental bans on 

cigarettes containing (-)-menthol (FDA, 2018), which is now the predominant isoform in 

mentholated cigarettes, by adding (+)-menthol instead. We therefore extended the 

experiments to determine whether chronic exposures to other forms of menthol [(±)-

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114769

 at A
SPE

T
 Journals on M

arch 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #114769 
	

 21 

menthol or (+)-menthol] alter α3β4 nAChR stoichiometry. Neither of the chronic menthol 

treatments significantly changed the cell capacitance relative to control treatment (p > 

0.05 for one-way ANOVA with post-hoc Tukey HSD test) (Table 2). 

 

Chronic treatments with either 500 nM (-)-menthol (EC50 = 134 µM; n = 5 – 12), 500 nM 

(±)-menthol (EC50 = 117 µM; n = 4 – 11), or 500 nM (+)-menthol (EC50 = 142 µM; n = 6 

– 13) for 24 – 30 hr did not shift the EC50 of ACh by > 1.5 fold compared with control 

treatment (no menthol and no nicotine; EC50 = 99 µM; n = 6 – 13) at Neuro-2a cells 

transfected with mouse α3-GFP and WT β4 nAChR subunits (Figure 2A and B; Table 2). 

These [ACh]-response experiments together with the Zn2+-inhibition experiments 

suggest that chronic menthol treatment does not shift the stoichiometry of functional 

mouse α3β4 nAChRs. The [ACh]-response of control and chronic menthol-treated cells 

have Hill slope values of between 1 – 2 (Table 2), as similarly reported in the published 

literature for α3β4 nAChRs (Grishin et al., 2010; Krashia et al., 2010; Shih et al., 2014).  

Furthermore, compared with control treatment, the different chronic menthol treatments 

did not significantly change the current density (pA/pF) of 100 µM ACh-evoked currents 

or 1 mM ACh-evoked currents (p > 0.05 for one-way ANOVA with post-hoc Tukey HSD 

test in both cases) (Table 2). 

 

The operational definition of desensitization is a decline in agonist-induced conductance 

while the agonist is present. Ton et al. (2015) have previously shown that acute menthol 

application accelerates desensitization of currents at α3β4 nAChR by accessing the 

open state of the channel, and our experiments with chronic menthol treatment in the 
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absence of acutely applied menthol and prior to agonist activation may highlight another 

mechanism for modulating desensitization. We assessed effects of chronic menthol 

exposure on desensitization. Compared with control treatment, chronic treatment with 

500 nM (-)-menthol significantly accelerated desensitization of 100 µM ACh-evoked 

currents at mouse α3-GFP β4 nAChRs (p < 0.05 for the two-tailed t-test, 39.8 ± 3.5% [n 

= 12] vs. 52.7 ± 5.1% [n = 12] current decay for control and chronic (-)-menthol 

treatment, respectively, at 1700 ms from the start of the ACh-evoked growth phase) 

(Figure 2C). Also, compared with control treatment, chronic treatment with 500 nM (-)-

menthol significantly accelerated desensitization of 200 µM ACh-evoked currents at 

mouse α3-GFP β4 nAChRs (p < 0.01 for the two-tailed t-test, 21.6 ± 3.4% [n = 6] vs. 

45.1 ± 5.7% [n = 6] current decay for control and chronic (-)-menthol treatment, 

respectively, at 650 ms from the start of the ACh-evoked growth phase) (Figure 2D). 

Our results follow the known pattern that, at higher agonist concentrations, nAChR 

currents desensitize more rapidly. We also tested whether, for a given ACh 

concentration, higher agonist-induced currents desensitize more rapidly.  We pooled 

data for 100 µM ACh-evoked currents, and separately, for 200 µM ACh-evoked currents, 

for the four chronic treatments [control, (-)-menthol, (±)-menthol, and (+)-menthol], with 

a criterion of > 100 -pA/pF to eliminate noisy contribution from relatively small signals. 

We compared peak current density (-pA/pF) and % desensitization at 1700 ms and 650 

ms after the start of the growth phase (for 100 µM [n = 29] and 200 µM ACh-evoked 

currents [n = 20], respectively). For both 100 µM ACh-evoked current and 200 µM ACh-

evoked current datasets, we found no significant Pearson’s correlation coefficient 

between peak current density and desensitization (ANOVA). 
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Chronic nicotine but not chronic menthol treatment reduces functional PM mouse 

α3β4 nAChR levels  

We analyzed our dataset to assess functional PM levels of mouse α3β4 nAChRs 

following chronic treatments with 500 nM (-)-menthol, with 250 µM nicotine alone, with 

combined 250 µM nicotine and 500 nM (-)-menthol, and control (neither menthol nor 

nicotine). The current density (average current amplitude in pA/cell capacitance in pF) is 

an appropriate metric for functional PM levels of mouse α3β4 nAChR. Unlike qRT-PCR 

or western blot, whole-cell patch-clamp electrophysiology can reveal alterations in 

functional nAChR PM levels or alterations from post-translational changes. Neither of 

the chronic treatments in this current density analysis significantly changed the cell 

capacitance relative to control treatment (p > 0.05 for one-way ANOVA with post-hoc 

Tukey HSD test) (Table 3). In this section, we report on the results of t-tests as we 

consider the subtle differences discussed below as important findings in the field of 

regulation of nAChRs. 

 

Chronic (-)-menthol treatment alone has no statistically significant effect on the current 

density of mouse α3β4 nAChRs compared with control treatment (no chronic nicotine 

nor menthol) (p > 0.05 for both one way-ANOVA with post-hoc Tukey HSD test and two-

tailed t-test; -102.7 ± 19.6 pA/pF vs. -129.7 ± 22.9 pA/pF, n = 28 and 27, respectively) 

(Figure 3; Table 3). Furthermore, combined chronic (-)-menthol and nicotine treatment 

had no statistically significant effect on the current density of mouse α3β4 nAChRs 
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compared with chronic nicotine treatment alone (p > 0.05 for both one way-ANOVA with 

post-hoc Tukey HSD test and two-tailed t-test; -71.9 ± 12.3 pA/pF vs. -62.7 ± 10.4 

pA/pF, n = 20 and 19, respectively) (Figure 3; Table 3). Interestingly, compared with 

control treatment (no chronic nicotine nor menthol), both chronic 250 µM nicotine 

treatment alone (p < 0.05 by two tailed t-test, p > 0.05 by one way-ANOVA; -129.7 ± 

22.9 pA/pF vs. -62.7 ± 10.4 pF/pA, n = 27 and 19, respectively; 52% decrease) and 

combined chronic 250 µM nicotine and 500 nM menthol treatment (p < 0.05 by two 

tailed t-test, p > 0.05 by one way-ANOVA with post-hoc Tukey HSD test; -129.7 ± 22.9 

pA/pF vs. -71.9 ± 12.3 pA/pF, n = 27 and 20, respectively; 45% decrease) caused a 

reduction in the current density of mouse α3β4 nAChRs (Figure 3; Table 3). Therefore, 

chronic nicotine treatment at 250 µM causes a reduction in functional mouse α3β4 

nAChR PM levels in Neuro-2a cells. Because we extensively washed the nicotine (250 

µM) for ≥ 30 min, and usually 100 min, in nicotine-free extracellular solution before the 

recording session (see Materials and Methods) for that cell, no classically defined 

“desensitization” process would adequately describe the reduced function.  

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114769

 at A
SPE

T
 Journals on M

arch 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #114769 
	

 25 

Discussion   

We undertook these experiments to understand whether chronic exposure to sub-µM 

menthol alters the properties of α3β4 nAChRs, whose abundance in the MhB-IPN 

pathway may dominate the aversive properties of nicotine. The pharmacokinetics of 

menthol in humans have proven challenging to study, presumably because menthol is 

glucuronidated via first-pass metabolism (Gelal et al., 1999), but we have estimated 

elsewhere that menthol concentrations in the brain of a mouse model of smoking to be 

0.5 – 2.5 µM (Henderson et al., 2017; Henderson et al., 2016).  

 

Long-term pharmacological effects on PM levels of nAChRs proceed, at least in part, 

via differential trafficking of the major subunit stoichiometries, α2β3 vs. α3β2. Therefore, 

we sought to measure both subunit stoichiometry and PM nAChR levels. Chronic (24 – 

30 hr) menthol treatment at 500 nM neither significantly altered subunit stoichiometry 

[(α3)2(β4)3 vs. (α3)3(β4)2] on the PM nor significantly changed functionally measured PM 

protein levels of mouse nAChR α3β4 (p > 0.05 for both).  

 

Faced with this insensitivity to chronic menthol, we sought to know whether chronic 

nicotine itself affects either functional PM stoichiometry or functional PM protein levels 

in mouse α3β4 nAChR levels in the Neuro-2a cell assay system. Surprisingly, chronic 

nicotine at a concentration many times that found in the blood following smoking 

decreased rather than increased the current density of 100 µM ACh-evoked currents, 

indicating reduced functional mouse α3β4 PM protein levels.  

 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114769

 at A
SPE

T
 Journals on M

arch 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #114769 
	

 26 

The β subunit is probably the dominant factor causing the contrast between chronic 

nicotine and/or menthol effects on α4β2 and α6β2, vs. on α3β4. In our assay system, 

α4β4 nAChRs are exported efficiently from the ER to the PM; most α4β2 nAChRs are 

not (Richards et al., 2011; Srinivasan et al., 2011). That is, in the absence of nicotine, 

mouse α4β4 nAChRs are already highly distributed in the PM relative to the ER. 

Previous experiments show a mechanistic basis for this difference. The mouse nAChR 

β4 subunit has an ER export motif (LXM), but no ER retention motif (RRQR), and these 

properties explain how mouse α3β4 nAChRs efficiently exit the ER to reach the PM 

(Mazzo et al., 2013; Srinivasan et al., 2011). Indeed, the crucial interaction may occur at 

the single previously non-binding β subunit, also termed “accessory” (Crespi et al., 

2018b). Mouse α4-eGFP β2 nAChRs with modified β2 subunits containing an export 

motif and without the ER retention motif were strongly localized to the PM relative to the 

ER (2.36 fold increase in PM-integrated density over mouse α4-eGFP WT β2 nAChRs), 

and chronic (48 hr) nicotine at 100 nM treatment caused only a modest (1.2 fold) 

additional increase in the PM integrated density (Srinivasan et al., 2011). Chronic (48 hr) 

nicotine at 100 nM upregulated mouse α4-GFP WT β2 nAChRs more substantially (1.9 

fold increase in PM-integrated density) (Srinivasan et al., 2011). The export motif is 

absent in both the nAChR α3 subunit and in the mouse nAChR β2 subunit, while the 

mouse nAChR β4 subunit contains an ER export motif (Mazzo et al., 2013; Srinivasan 

et al., 2011). Therefore, it is mechanistically understandable how mouse nAChR α3β4 

nAChRs have a high PM vs. ER distribution without additional aids to ER export of α3β4 

nAChRs. 
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What is the relevance to chronic effects of menthol? Previous experiments show that 

chronic sub-µM menthol also apparently acts in the early exocytotic pathway to aid the 

ER exit of nAChRs (Henderson et al., 2017; Henderson et al., 2016). The observed 

details of chronic menthol effects differ from those of chronic nicotine effects, and 

probably also from the acute blocking effects of menthol at [menthol] > 100-fold higher 

than our chronically applied concentrations (Ton et al., 2015). We tentatively suggested 

that chronic sub-µM menthol could act as a nonspecific “chemical chaperone” for α4β2 

and α6β2 nAChRs (Henderson et al., 2016); but the target could also be another protein 

in the early exocytotic pathway. In any case, because α3β4 nAChRs do not experience 

a rate-limiting step in the early exocytotic pathway due to the absence of an ER 

retention motif, it is mechanistically understandable that menthol treatment causes no 

further increase in the already high existing PM vs. ER distribution. 

 

Certain more subtle effects of chronic sub-µM menthol cannot be ruled out. Chronic 500 

nM (-)-menthol treatment accelerated desensitization of ACh-evoked currents at mouse 

α3β4 nAChRs, even > 1 hr after we washed out the menthol. This effect is unlikely to 

arise from a menthol-nAChR binding with a lifetime of ~1 hr. We can also rule out 

sequelae of (-)-menthol interactions with TRPM8, the classical menthol target, because 

Neuro-2a cells do not express TRPM8 mRNA (Henderson et al., 2016). However, 

phosphorylation of nAChRs does, in some cases, enhance desensitization (Di 

Angelantonio et al., 2011; Hopfield et al., 1988; Huganir et al., 1986; Nishizaki and 

Sumikawa, 1998). Whether an unknown pathway activates protein kinase(s) during 
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chronic exposure to 500 nM (-)-menthol, and whether nAChR phosphorylation is stable 

for > 1 hr after the menthol is removed, cannot be evaluated at present.  

 

The steps leading to functional α3β4 nAChRs reaching the cell membrane include: 1) 

assembly of subunits into a pentamer; and 2) post-assembly trafficking, which can be 

affected by degradation of the pentamer. While our experiments and previously 

published data indicate that α3 and β4 subunits preferentially assemble into a (α3)3(β4)2 

stoiochiometry (Krashia et al., 2010), this stoichiometry is still prone to degradation 

(Mazzo et al., 2013). Therefore, our patch-clamp experiments mainly record currents 

from the (α3)3(β4)2 stoichiometry because the (α3)2(β4)3 stoichiometry may reach the 

plasma membrane less efficiently due to possibly lower pentamer assembly. Additional 

intracellular (α3)3(β4)2 complexes formed in the presence of chronic menthol may 

undergo degradation before they can be trafficked to the PM. Preliminary data from our 

laboratory lend support to such a mechanism, but at higher menthol concentrations than 

used here (Patowary et al., 2016).  

 

Mechanism of downregulation by chronic nicotine 

Previous experiments indicate that chronic treatments with nicotine have less dramatic 

effects on protein levels of nAChR α3β4 compared with nAChR α4β2 in several brain 

regions studied (Davila-Garcia et al., 2003; Fox et al., 2015; Marks et al., 2015; Meyer 

et al., 2001; Nguyen et al., 2003; Wang et al., 1998). In a contrasting report, chronic (14 

days) nicotine treatment in rats caused downregulation of nAChR α3β4-like binding 

sites in the subiculum and cerebellum (Nguyen et al., 2003). Although efficient 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114769

 at A
SPE

T
 Journals on M

arch 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #114769 
	

 29 

membrane trafficking usually limits the PM levels of α3β4 nAChRs, Mazzo and 

colleagues skillfully rendered membrane tracking the rate-limiting step, by inhibiting 

protein synthesis with cycloheximide. Under these circumstances, nicotine-induced 

upregulation of human α3β4 nAChRs occurs through the increased stability of the 

(α3)2(β4)3 stoichiometry (Mazzo et al., 2013), leading to increased trafficking to the PM. 

It is unlikely that chronic nicotine treatment would cause decreased current density of 

100 µM ACh-evoked currents through a shift towards the lower potency mouse 

(α3)3(β4)2 nAChR stoichiometry, because 1) when Neuro-2a cells in our study or 

HEK293 cells in another study were transfected with α3 and β4 nAChRs at a 1:1 ratio, 

the level of Zn2+-inhibition of ACh-evoked currents suggests (α3)3(β4)2 as the 

predominant stoichiometry (Krashia et al., 2010); 2) if nicotine shifts α3β4 nAChR 

stoichiometry, it would be towards (α3)2(β4)3 (Mazzo et al., 2013), as nicotine shifting 

towards a stoichiometry of three α and two β subunits of any nAChR has not been 

previously reported. 

 

Our finding, that nicotine-induced downregulation of mouse α3β4 nAChRs, is not 

common but recalls experiments on other nAChRs. In toxin binding studies in rodents or 

primates, nicotine downregulates α6* nAChRs in some cases (Lai et al., 2005; 

McCallum et al., 2006b; Mugnaini et al., 2006) but not others (McCallum et al., 2006a; 

Visanji et al., 2006), and the effect depends on the detailed stoichiometry of the 

complex (Fox et al., 2015; Perez et al., 2008).  

 

Further question and conclusions 
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It will be interesting to study whether chronic menthol treatment has different effects at 

α3β4 vs. α3β4α5 nAChRs, analogous to the differential modulation by lynx1 of human 

α3β4 and α3β4α5 nAChRs (George et al., 2017). Furthermore, functional α3β4β3 

nAChRs are present in brain (Grady et al., 2009). It remains possible that the subunit in 

the “accessory position” influences the nature of the subunit interfaces (Walsh et al., 

2018) and hence potentially the effects from chronic treatments by menthol or other 

chaperones.  

 

In conclusion, chronic menthol treatment (500 nM, 24 – 30 hr) failed to shift the [ACh]-

response relationship and Zn2+ sensitivity of ACh-evoked currents at mouse α3β4 

nAChRs, suggesting no change in receptor stoichiometry at the PM. Furthermore, 

compared with no drug treatment, the current density of 100 ACh-evoked currents was 

not significantly changed following chronic menthol treatment (p > 0.05), indicating that 

functional mouse α3β4 nAChR PM levels were not changed. Mechanistically, these 

data are broadly consistent with the view that chronic effects of sub-µM menthol act via 

events in the early exocytotic pathway. Pathopharmacologically, our datasets suggest 

that smoking mentholated cigarettes, which enhances smoking addiction and nicotine 

addiction, exerts these effects via mechanisms other than chronic sub-µM exposure of 

α3β4 nAChRs. 
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Figure legends  

 

Figure 1.  

Functional characterization shows that chronic (24 – 30 hr) (-)-menthol and/or nicotine 

treatment does not change the Zn2+ sensitivity of ACh-evoked currents at mouse α3β4 

nAChRs. cDNA-encoding mouse α3-GFP and WT β4 subunits were transfected at a 1:1 

ratio into Neuro-2a cells. Using whole-cell patch clamp at a holding potential -65 mV, 

inward current responses were recorded during ACh application at the indicated 

concentrations and the chronic treatment conditions are underlined. Menthol and/or 

nicotine were not present during ACh application. A, [ACh]-response curves (average 

normalized response ± S.E. values are represented in the curve) were constructed (n = 

6 – 13 for different concentrations). B, exemplar voltage-clamp current traces displayed 

by their ACh concentration and duration of application. C, Chronic 500 nM (-)-menthol 

(n = 16), chronic 250 µM nicotine (n = 19), and combined chronic 500 nM (-)-menthol 

and 250 µM nicotine treatments (n = 20) did not significantly (n.s.) change the level of 

inhibition of 100 µM ACh by 1 mM Zn2+ compared with control treatment (n = 14) (p > 

0.05 for both one-way ANOVA with post-hoc Tukey HSD test and two-tailed t-tests). 

Mean ± S.E. values are represented in the bar chart. The 1 mM Zn2+ solution without 

ACh was applied to the Neuro-2a cells for 2 s before it was co-applied with 100 µM ACh 

for 1 s. D, Exemplar traces of 100 µM ACh only application 2.5 min before, during co-

application, and 100 µM ACh only application 2.5 min after (washout) 100 µM ACh + 1 

mM Zn2+ co-application (Zn2+ co-app.). The black bar represents ACh application for all 

3 traces, and the adjoining grey bar represents ACh for 1-2 traces (differences in 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on January 22, 2019 as DOI: 10.1124/mol.118.114769

 at A
SPE

T
 Journals on M

arch 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #114769 
	

 45 

application due to the variations in flow rates from the Octaflow manifold that combined 

solutions).   

 

Figure 2.  

Chronic (24 – 30 hr) menthol treatment does not shift the [ACh]-response relationship at 

mouse α3β4 nAChRs transfected into Neuro-2a cells, but accelerates desensitization 

kinetics. Menthol and/or nicotine were not present during ACh application. Chronic 

treatments key: control = black; (-)-menthol = green; (±)-menthol = blue; (+)-menthol = 

purple.  A, [ACh]-response curves (average normalized response ± S.E. values are 

represented in the curves) were constructed for chronic treatments with 500 nM (-)-

menthol, 500 nM (+)-menthol, 500 nM (±)-menthol (n = 5 – 12, 6 – 13, and 4 – 11, 

respectively for the different concentrations) and plotted with control (no menthol, n = 6-

13, as in Figure 1). EC50 values in Table 2. B, exemplar traces from chronic 500 nM (-)-

menthol treatment displayed by their ACh concentration and duration of application. C, 

D, chronic menthol treatment alters desensitization of 100 µM (C) and 200 µM (D) ACh-

evoked currents. The % current decay from the ACh-evoked peak was calculated at 

1700 ms 650 ms from the start of the ACh-evoked growth phase for 100 µM ACh and 

200 µM ACh applications, respectively. Mean current waveform curves with standard 

error for no drug-treated, (-)-menthol, (+)-menthol, and (±)-menthol treated chronically at 

transfected Neuro-2a cells (average of 12, 12, 11, and 13 cells for 100 µM ACh [C], and 

average of 6, 6, 5, and 6 and 200 µM ACh [D], respectively). Mean ± S.E. values are 

represented in the waveforms in C and D.  
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Figure 3.  

Chronic (24 – 30 hr) (-)-menthol treatment does not alter functional PM levels of mouse 

α3β4 nAChRs transiently transfected into Neuro-2a cells. Summary of current density (-

pA/pF) for the different chronic treatments (control, 500 nM (-)-menthol, 250 µM nicotine, 

and combined 500 nM (-)-menthol and 250 µM nicotine; n = 27, 28, 19, and 20, 

respectively). n.s., not significantly changed (p > 0.05) by one-way ANOVA with post-

hoc Tukey HSD test. Mean ± S.E. values are represented in the bar chart. Menthol 

and/or nicotine were not present during ACh application.  
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TABLE 1. Level (%) of 1 mM Zn2+-inhibition of 100 µM ACh-currents at mouse α3β4 

nAChRs under different chronic (24 – 30 hr) treatments. Cells were studied 52.5 – 52.75 

hr after transfection and 26.5 – 27.25 hr after incubation in no drug-containing media or 

after menthol and/or nicotine was added (both durations are averages). 

 

Chronic treatment  Control  (-)-menthol  Nicotine 
Nicotine and 

(-)-menthol 

(-)-Menthol (nM) 0 500 0 500 

Nicotine (µM) 0 0 250 250 

% Zn2+-inhibitiona 50.1 ± 6.5 48.5 ± 4.8 48.7 ± 6.1  55.4 ± 5.3 

N  14 16 19 20 

Cell capacitance (pF)a 28.2 ± 5.3 23.3 ± 2.5 22.5 ± 1.9 22.9 ± 1.9 

Current density  

(pA/pF)a, b 
-108.4 ± 31.6 -91.4 ± 15.6 -62.7 ± 10.4 -71.9 ± 12.3 

Mean ± S.E. values are represented in the table 

ap > 0.05 for one way-ANOVA with post-hoc Tukey HSD test 

bCurrent density between these same chronic treatments with higher N numbers for control and chronic (-

)-menthol treatment are shown in Table 3 and discussed in the Results section entitled ‘Chronic nicotine 

but not chronic menthol treatment reduces functional PM mouse α3β4 nAChR levels’ 
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TABLE 2. [ACh]-response at mouse α3β4 nAChRs under different chronic (24 – 30 hr) 

treatments. Cells were studied 51.75 – 52.75 hr after transfection and 25.75 – 26.5 hr 

after incubation in no drug-containing media or after menthol was added (both durations 

are averages). 	

	
Chronic treatment  Control  (-)-menthol  (±)-menthol (+)-menthol 

N  6 – 13  5 – 12  4 – 11  6 – 13  

EC50 (µM)  99 ± 14  134 ± 18  117 ± 16  142 ± 5  

Hill slope 1.14 ± 0.18 1.42 ± 0.24 1.28 ± 0.21 1.59 ± 0.07 

Cell capacitance (pF)a  19.7 ± 1.9  20.0 ± 3.7 17.6 ± 2.0  16.0 ± 1.9 

Current density (pA/pF) 

of 100 µM ACh currentsa  
-153.2 ± 33.3 -117.1 ± 41.4 -196.9 ± 42.9 -214.5 ± 33.4 

Current density (pA/pF) 

of 1 mM ACh currentsa 
-363.1 ± 84.6 -295.9 ± 86.7 -440.5 ± 64.1 -566.1 ± 84.4 

Mean ± S.E. values are represented in the table 

ap > 0.05 for one way-ANOVA with post-hoc Tukey HSD test 
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TABLE 3. Current density (pA/pF) at mouse α3β4 nAChRs under different chronic (24 – 

30 hr) treatments. Cells were studied 52.5 – 52.75 hr after transfection and 26.5 – 27.0 

hr after incubation in no drug-containing media or after menthol and/or nicotine was 

added (both durations are averages). 

 

Chronic treatment  Control  (-)-menthol  Nicotine 
Nicotine and 

(-)-menthol 

(-)-Menthol (nM) 0 500 0 500 

Nicotine (µM) 0 0 250 250 

Cell capacitance (pF)a 24.1 ± 3.0 21.9 ± 2.1 22.5 ± 1.9 22.9 ± 1.9 

Current density (pF/pA)a -129.7 ± 22.9 -102.7 ± 19.6 -62.7 ± 10.4 -71.9 ± 12.3 

N 27 28 19 20 

Mean ± S.E. values are represented in the table 

ap > 0.05 for one way-ANOVA with post-hoc Tukey HSD test 
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