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Abstract 

Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the 

United States. The sulfotransferase-mediated sulfation of APAP is widely believed to a 

protective mechanism to attenuate the hepatotoxicity of APAP. The cholesterol sulfotransferase 

SULT2B1b is best known for its activity in catalyzing the sulfoconjugation of cholesterol to 

synthesize cholesterol sulfate. SULT2B1b can be transcriptionally and positively regulated by 

the hepatic nuclear factor 4α (HNF4α). In this study, we uncovered an unexpected role for 

SULT2B1b in APAP toxicity. Hepatic overexpression of SULT2B1b sensitized mice to APAP-

induced liver injury, whereas ablation of the Sult2B1b gene in mice conferred resistance to the 

APAP hepatotoxicity. Consistent with the notion that Sult2B1b is a transcriptional target of 

HNF4α, overexpression of HNF4α sensitizes mice or primary hepatocytes to APAP-induced 

hepatotoxicity in a Sult2B1b dependent manner. We conclude that the HNF4α-SULT2B1b axis 

has a unique role in APAP-induced acute liver injury, and SULT2B1b induction might be a risk 

factor for APAP hepatotoxicity. 
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Introduction 

Acetaminophen (APAP) or Tylenol is a commonly used drug to reduce fever and relieve pain. 

However, APAP overdoses result in approximately 500 people dead each year in the United 

States (Lee, 2008). APAP overdose causes most of the acute liver failure (ALF), especially in the 

United States (Furuta et al., 2016). At therapeutic doses, about 3% of APAP is excreted as the 

parent drug via the urine. More than 90% of APAP can be rapidly metabolized into the nontoxic 

compounds by phase II conjugating enzymes in the liver, two thirds through glucuronidation by 

UDP-glucuronosyltransferases (UGTs) and one third through sulfation by sulfotransferases 

(SULTs). 5%-9% of APAP is bioactivated to a highly reactive toxic metabolite, N-acetyl-p-

benzoquinone imine (NAPQI), by phase I cytochrome P450 enzymes (CYPs), especially the 

CYP2E1 (Dahlin et al., 1984; Mannery et al., 2010; Potter et al., 1973). NAPQI has a short half-

life, because it can be rapidly eliminated by conjugation with glutathione (GSH), before being 

excreted via the urine as mercapturic acid and cysteine conjugates (Du et al., 2016). When APAP 

overdose occurs, the glucuronidation and sulfation pathways are saturated, so more APAP is 

metabolized by CYPs to NAPQI. Excessive NAPQI depletes intracellular GSH. Accumulated 
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NAPQI binds to other cellular proteins, leading to mitochondrial oxidative stress, nuclear DNA 

fragmentation, and hepatocyte death (Beger et al., 2015; Du et al., 2016). The oral formulation of 

N-acetylcysteine (NAC) is an antidote approved for treating the overdose of APAP. NAC is 

nearly fully hepatoprotective when it is administered to patients within 8 hours after an acute 

APAP overdose (Wolf et al., 2007; Yoon et al., 2016). However, NAC has a narrow therapeutic 

window (Nam et al., 2017). There are no effective treatment options for severe ALF except for 

liver transplantation. Thus, new therapeutics that target APAP overdose are urgently needed. 

 

The human SULT2 family, also called hydroxysteroid-SULT family, is comprised of two genes, 

known as SULT2A1 and SULT2B1. They catalyze the sulfo-conjugation of many compounds 

and differ in tissue distribution and substrate specificity (Falany and Rohn-Glowacki, 2013). 

Because of the length of transcripts, SULT2B1 is divided into two isoforms, SULT2B1a and 

SULT2B1b. At the transcript level, the expression of SULT2B1a and SULT2B1b is very similar, 

but only the SULT2B1b protein can be detected in humans (Falany et al., 2006). SULT2B1b 

appears to be the major functional SULT2B1 isoform. SULT2B1b is specific for the sulfation of 
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3-hydroxysteroids (Falany and Rohn-Glowacki, 2013). Subsequent studies have reported crucial 

roles of SULT2B1b in regulating liver functions and impacting the pathogenesis of diseases. 

SULT2B1b is induced by liver regeneration in a mouse model of partial hepatectomy (Lo Sasso 

et al., 2010). SULT2B1b increases the proliferation of liver cancer cells which may have 

contributed to the progression of HCC (Yang et al., 2013). Oxysterols, the endogenous ligands 

for the liver X Receptor (LXR), are substrates of SULT2B1b (Bai et al., 2011; Bensinger et al., 

2008). Upregulation of SULT2B1b inhibited lipogenesis by sulfonating and deactivating the 

LXR-activating oxysterols (Bai et al., 2011), and aggravated 3,5-diethoxycarbonyl-1,4-

dihydrocollidine (DDC)-induced liver damage by suppressing oxysterol-induced LXR activation 

(Wang et al., 2017). SULT2B1b has been reported to be regulated by several nuclear receptors, 

such as CAR (Dong et al., 2009), VDR (Seo et al., 2013), and PPARs (Jiang et al., 2005).  

 

We recently reported that SULT2B1b can inhibit hepatic gluconeogenesis by suppressing the 

gluconeogenic activity of hepatocyte nuclear factor 4α (HNF4α) (Shi et al., 2014). HNF4a 

promotes gluconeogenesis by upregulating PEPCK and G6Pase gene expression (Rhee et al., 
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2003). Mechanistically, SULT2B1b and its enzymatic product cholesterol sulfate suppress 

gluconeogenesis by inhibiting acetyl-CoA synthetase (Acss) gene expression, leading to reduced 

acetylation and nuclear exclusion of HNF4α (Shi et al., 2014). More recently, we reported that 

the SULT2B1b itself is a transcriptional target gene of HNF4α (Bi et al., 2018). The 

establishment of SULT2B1b as a HNF4α target gene called up our hypothesis that the induction 

of SULT2B1b by HNF4α involves in a negative feedback to inhibit the gluconeogenic activity of 

HNF4α (Bi et al., 2018). Although several SULT isoforms and their regulations have been 

implicated in APAP toxicity (Saini et al., 2011), it is unknown whether SULT2B1b plays a role 

in APAP hepatotoxicity and if so, whether HNF4α can also impact the hepatotoxicity of APAP 

by its positive regulation of SULT2B1b.  

 

In this study, we demonstrated that overexpression of hepatic SULT2B1b sensitized mice to 

APAP-induced liver damage, whereas ablation of Sult2B1b attenuated mice from APAP toxicity. 

A forced expression of Hnf4α aggravates APAP hepatotoxicity in a Sult2B1b dependent manner. 
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Our results pointed to SULT2B1b induction as a potential risk factor for APAP-induced acute 

liver damage.  
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Materials and Methods 

Animals. The Sult2B1b knockout mice (Strain # 018773) in C57BL/6J-129/SvJ mixed 

background were purchased from the Jackson Laboratory (Bar Harbor, ME), and wild type (WT) 

mice of the same mixed genetic background were used as the controls. The liver-specific FABP-

SULT2B1b transgenic mice in the C57BL/6J background were created and characterized as 

previously described (Shi et al., 2014), and WT C57BL/6J mice were used as the controls. All 

mice used in this study were 6 to 8 weeks old female mice. The use of animals in this study 

complied with all relevant federal guidelines and institutional policies.  

 

Induction of APAP-induced liver injury. APAP was dissolved in 0.5% methyl cellulose 

solution. Before receiving a single dose of 200 mg/kg APAP by gavage, all of the mice were 

fasted for 16 hours. Food was given back to mice three hours after the APAP treatment. The 

mice were sacrificed 24 hours post APAP treatment (Saini et al., 2011). Liver tissues and serum 

samples were collected for biochemical analysis and histology. All chemicals mentioned in this 

study were bought from Sigma (St. Louis, MO). 
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Histology. For hematoxylin and eosin (H&E) staining, liver samples were fixed in 10% 

paraformaldehyde, embedded in paraffin, sectioned at 4 µm, and stained. For 

immunohistochemistry analysis, standard immunohistochemical procedures were performed 

using a Ki67 antibody purchased from Abcam (Cambridge, MA). APO-BRDU (TUNEL) 

Apoptosis Kit from Novus (Littleton, CO) was used to examine dying cells with exposed or 

fragmented DNA ends. 

 

Serum and liver tissue chemistry. ALT and AST analysis in the serum (Lu et al., 2015) and 

primary hepatocytes (Miyakawa et al., 2015) were performed using commercial assay kits from 

Stanbio Laboratory (Boerne, TX). The ratio of ALT in the medium of primary hepatocytes to 

ALT in the lysates of primary hepatocytes was calculated as the percentage of ALT release. The 

concentrations of GSH and GSSG in the liver tissue samples were measured by Assay Kit from 

BioAssay Systems (Hayward, CA). 
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Real-time PCR. Total RNA in the liver was isolated by the TRIzol reagent from Thermo Fisher 

Scientific (Pittsburgh, PA). Reverse transcription was conducted with random hexamer primers 

and Superscript RT III enzyme from Invitrogen. The ABI 7300 Real-Time PCR System was 

used to perform SYBR Green-based real-time PCR. The quantity of mRNA measured was 

normalized to the cyclophilin gene expression. 

 

Western blot analysis. Western blotting was conducted as described previously (Shi et al., 

2014). The primary antibodies for Hnf4α (Cat # MA1-199) and Sult2B1b (sc-67103) were 

ordered from Thermo Fisher Scientific and Santa Cruz (Santa Cruz, CA), respectively.  

 

Isolation, culture and adenoviral infection of primary hepatocytes from mice. As described 

previously (Jiang et al., 2014), primary hepatocytes were extracted from 8 to 10 weeks old mice. 

Briefly, the mice liver was first perfused with Hanks’ buffered salt solution containing 0.1 M 

HEPES and 0.5 mM EGTA at the speed of 5 ml/min for 5–10 minutes and then perfused with L-

15 medium containing 20 mg/ml liberase, 1.8 mM CaCl2, and 0.1 M HEPES from Roche 
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(Indianapolis, IN). When the perfusion was completed, the dissociated hepatocytes were filtered 

through 50-mm tissue cell strainer and centrifuged at 500 rpm for 3 minutes at 4°C to collect. 

Hepatocytes were seeded onto 6-well plates coated with type 1 collagen in William E medium 

containing 5% fetal bovine serum. After 2 hours, the medium was replaced by HepatoZYME-

SFM medium (GIBCO, Grand Island, NY). To overexpress Hnf4α, the primary hepatocytes were 

infected with adenovirus expressing Hnf4α (Ad-Hnf4α), or the control virus (Ad-Ctrl). Both 

virus were given as presents by Dr. Yanqiao Zhang from the Northeast Ohio Medical University 

(Yin et al., 2011).  

 

APAP metabolic analysis. APAP metabolic analysis was performed as described (Cheng et al., 

2009). In brief, 100 mg of liver tissue samples were homogenized in 500 µl of water. 200 µl of 

acetonitrile:methanol (1:1, v/v) was added to 100 µl of each homogenate. The mixture was 

vortexed and centrifuged (15,000 g for 10 min), and the supernatant was transferred to a new 

1.5mL Eppendorf vial for a second centrifugation (15,000 g for 10 min). 20 µl of the serum 

samples were added by 80 µl of methanol. The prepared mixture was vortexed and centrifuged at 
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15,000 g for 10 min. Each supernatant from above was transferred to an autosampler vial and 

analyzed by ultraperformance liquid chromatography coupled with time-of-flight mass 

spectrometry (UPLC-TOFMS) from Waters Corporation (Milford, MA).  Metabolites was 

separated by an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 µm; Waters, Milford, MA) 

using a gradient ranging from 5% to 95% aqueous acetonitrile containing 0.1% formic acid over 

a 6-min run. TOFMS was operated in positive mode with electrospray ionization and the MS 

data were acquired in centroid format (50-1,000 Da). The capillary and cone voltages were set as 

0.8 kV and 40 V, respectively. The source temperature was set as 150°C. The desolvation gas 

(800 l/hour) was set at 500°C. APAP and its major metabolites (APAP-sulfate, APAP-

glucuronide, APAP-GSH, and APAP-Cys) were identified by high-resolution accurate mass and 

tandem MS/MS fragmental analysis. The peak areas were quantified to represent the signal 

intensities. All data were acquired using Masslynx™ V4.1 software and quantified using 

Quanlynx™ V4.1 (Waters Corp., Milford, MA). 
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Statistical analysis. All the data are expressed as means ± standard error of the mean (SEM). 

Comparisons of two groups were evaluated by the unpaired two-tailed Student’s t test, and 

comparisons of three or more groups were performed by one-way MANOVA. The MANOVA 

analysis was carried out by SPSS version 24.0. to understand if there were differences between 

the genotype on the two dependent variables, AST and ALT. The criterion for statistical 

significance was a P value of less than 0.05 unless otherwise indicated. Some results were 

applied Bonferroni correction to control the type 1 errors, and accepted a P value of less than 

0.005 (for Figures 1 and 2, in which 10 comparisons were tested in the same samples), 0.017 (for 

Figure 3, in which 3 comparisons were tested in the same samples), 0.003 (for Figure 5A-C, in 

which 15 comparisons were tested in the same samples), 0.025 (for Figure 5E, in which 2 

comparisons were tested in the same samples), or 0.01 (for Figure 5F, in which 5 comparisons 

were tested in the same samples). 
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Results 

Transgenic overexpression of SULT2B1b in the liver aggravates APAP-induced liver 

injury 

The creation and characterization of transgenic (TG) mice that overexpress the cholesterol 

sulfotransferase (SULT2B1b) in the liver under the rat fatty acid binding protein (FABP) gene 

promoter were previously reported by us (Shi et al., 2014). To investigate whether SULT2B1b 

plays a role in APAP hepatotoxicity, we treated the TG mice with a single dose of APAP (200 

mg/kg by gavage) after a 16-hour fasting (Saini et al., 2011). Twenty-four hours after the 

treatment, liver tissue and serum samples were harvested for analysis. H&E staining revealed 

that the livers of the TG mice displayed more severe damage compared to the wild type (WT) 

mice. The liver histology of the vehicle-treated TG mice appeared normal. Upon the APAP 

treatment, the TG mice showed a quantifiably more extensive necrotic liver damage than their 

WT counterparts (Fig. 1A). In addition, APAP-treated TG mice had elevated serum levels of 

alanine aminotransferase (ALT) (Fig. 1B) and aspartate aminotransferase (AST) (Fig. 1C) 

activity compared to APAP-treated WT mice. In APAP-induced liver injury, it is believed that 
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overdose of APAP is metabolized by CYPs to reactive intermediate NAPQI, which depletes 

GSH, binds to cellular proteins and induces nuclear DNA fragmentation, leading to necrotic 

hepatocyte death (Hinson et al., 2010). So, we assessed nuclear DNA fragmentation by TUNEL 

staining. The TUNEL staining in APAP-treated TG mice was increased (Fig. 1D), consistent 

with the increased liver damage in this genotype. It is known that liver regeneration is important 

for survival after APAP overdose (Bhushan et al., 2014), because hepatic cell necrosis eventually 

induces liver regeneration (Guicciardi et al., 2013). Usually, more necrosis is followed by more 

cell proliferation. Therefore, we evaluated the expression of cell proliferation and cell cycle 

related genes in the liver by real-time PCR. The expression of proliferating cell nuclear antigen 

(Pcna) of TG mice was significantly higher than the WT mice (Fig. 1E), consistent with the 

notion that TG mice had more liver damage than WT mice. Furthermore, the hepatic expression 

of inflammatory cytokine genes interleukin-6 (Il-6) and interleukin-1β (Il-1β) in TG mice was 

significantly higher than that in WT mice after the APAP treatment (Fig. 1F).  

 

Ablation of Sult2B1b protects mice from APAP-induced liver damage 
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To assess whether Sult2B1b ablation affects APAP-induced liver injury, we treated Sult2B1b 

knockout (KO) mice with a single dose of 200 mg/kg APAP. The KO mice showed less liver 

damage compared to the WT mice. The WT mice showed remarkable necrotic liver damage at 

24 hours post-APAP treatment as expected. In contrast, the KO mice showed less liver damage 

as evidence by smaller necrotic area (Fig. 2A), decreased serum levels of ALT (Fig. 2B) and 

AST (Fig. 2C), and decreased TUNEL staining (Fig. 2D). The mRNA expression of Pcna and 

Ccnd 1 was significantly decreased in APAP-treated KO mice (Fig. 2E), consistent with an 

attenuated liver injury in this genotype. The decreased hepatocyte proliferation in APAP-treated 

KO mice was also supported by a decreased immunostaining of the hepatocyte proliferation 

marker Ki67 (Fig. 2F). Consistently and compared to the WT mice, the mRNA expression of Il-

1β was decreased in APAP-treated KO mice (Fig. 2G).  

 

Overexpression of Hnf4α induces Sult2B1b and sensitizes mice or primary hepatocytes to 

APAP-induced injury 
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We recently reported that Sult2B1b is a transcriptional target of Hnf4α (Bi et al., 2018). Having 

shown that overexpression of SULT2B1b was sufficient to sensitize mice to APAP-induced liver 

injury, we wanted to determine whether up-regulation of Sult2B1b by HNF4α in the mouse liver 

will have a similar sensitizing effect on APAP-induced liver injury. In this experiment, WT mice 

were infected with adenovirus expressing Hnf4α (Ad-Hnf4α) or the control virus (Ad-Ctrl) for 

one week before being treated with APAP. The overexpression Hnf4α and expected induction of 

Sult2B1b were confirmed by Western blotting (Fig. 3A). Compared to Ad-Ctrl infected mice, the 

Ad-Hnf4α infected mice displayed more severe liver injury as evidence by the gross appearance 

and increased necrotic area (Fig. 3B), and increased serum levels of ALT and AST (Fig. 3C). 

The in vivo results were further supported by in vitro results using primary hepatocytes isolated 

from WT mice. In this experiment, primary hepatocytes infected with Ad-Ctrl or Ad-Hnf4α were 

treated with 5 mM APAP for 24 hours. The overexpression of Hnf4α and induction of Sult2B1b 

were proved by real-time PCR (Fig. 3D). Compared to Ad-Ctrl infected hepatocytes, Ad-Hnf4α 

infected hepatocytes showed an increased APAP-responsive release of ALT (Fig. 3E), and a 

decreased cell viability as shown by the MTT assay (Fig. 3F).  
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The sensitizing effect of HNF4α on APAP-induced injury is Sult2B1b dependent 

To determine whether the sensitizing effect of HNF4α on APAP-induced liver injury in vivo is 

Sult2B1b dependent, we infected Sult2B1b KO mice with Ad-Ctrl or Ad-Hnf4α before 

challenging them with APAP. The overexpression of Hnf4α was verified by Western blotting 

(Fig. 4A). Upon the APAP treatment, the injury between Ad-Ctrl infected and Ad-Hnf4α 

infected KO mice was not different, because neither the gross appearance and necrotic area (Fig. 

4B), nor the serum levels of ALT and AST (Fig. 4C) were different between these two groups of 

KO mice. The dependence of Sult2B1b in the sensitizing effect of Hnf4α was also confirmed in 

primary hepatocytes isolated from the KO mice. The adenoviral overexpression of Hnf4α in KO 

primary hepatocytes was confirmed by real-time PCR (Fig. 4D). The KO primary hepatocytes 

infected with Ad-Ctrl or Ad-Hnf4α showed comparable release of ALT (Fig. 4E) and cell 

viability as shown by the MTT assay (Fig. 4F). These results suggested that the sensitizing effect 

of HNF4α on APAP-induced injury is Sult2B1b dependent both in vivo and in vitro. 
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Mechanism by which SULT2B1b sensitizes mice to APAP-induced liver injury  

To understand the mechanism by which SULT2B1b sensitizes mice to APAP-induced liver 

injury, we profiled the expression of genes known to play a role in APAP hepatotoxicity. Among 

the phase I and phase II enzymes, only the expression of Ugt1 was dramatically induced in 

APAP-treated TG mice, while the expressions of other APAP metabolizing enzymes showed no 

significant difference in either the TG or KO mice (Fig. 5A). The expression of a panel of 

nuclear receptors that are known to play a role in APAP hepatotoxicity, including CAR (Zhang 

et al., 2002), FXR (Lee et al., 2010), LXRα (Saini et al., 2011), PXR (Guo et al., 2004) and RXR 

(Dai et al., 2005), was not affected by the SULT2B1b transgene or knockout either (Fig. 5B). We 

have previously reported that activation of LXRα attenuated APAP-induced liver injury (Saini et 

al., 2011). We found the expressions of LXR as well as its target genes were not affected in 

APAP-treated TG or KO mice (Fig. 5C). The total hepatic GSH content in APAP-treated TG 

mice was remarkably decreased, whereas the ratio of GSSG/GSH was significantly increased in 

TG mice (Fig. 5D, top), consistent with the increased sensitivity to APAP-induced liver injury in 

this genotype. However, the total GSH level and the GSSG/GSH ratio between WT and KO 
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mice were not different (Fig. 5D, bottom). When the APAP metabolites were analyzed, we found 

the serum concentrations of APAP-sulfate and APAP-glucuronide were increased in TG mice 24 

hours after the APAP treatment (Fig. 5E), consistent with the expression of the SULT transgene 

and induction of Ugt1 in this genotype. Interestingly, at 1 hour post-APAP treatment, the 

transgene had little effect on the hepatic concentrations of parent APAP, APAP-sulfate, APAP-

glucuronide, APAP-GSH, or APAP-Cys (Fig. 5F).  
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Discussion 

Overdose of APAP could eventually lead to acute liver failure. Although the mechanisms of 

APAP-induced liver injury have been extensively studied, factors that can affect the progression 

of APAP-induced liver disease or improve the liver recovery are less investigated. Identification 

of the related pathogenic factors will provide novel therapeutic approaches for the treatment of 

APAP overdose.  

 

SULT2B1b is a hydroxysteroid sulfotransferase that plays important roles in diverse cell types 

and tissues, such as suppressing lipogenesis (Ren and Ning, 2014) and gluconeogenesis (Bi et al., 

2018; Shi et al., 2014), and promoting the hepatocyte proliferation (Yang et al., 2013), affecting 

prostate and colorectal cancer cells (Vickman et al., 2016), and suppressing the T cell receptor 

signaling (Wang et al., 2016). In this study, we found a novel function of SULT2B1b in APAP-

induced liver toxicity. Specifically, hepatic transgenic overexpression of SULT2B1b exacerbated 

APAP-induced acute liver injury, whereas ablation of the Sult2B1b gene in mice conferred 

protection to APAP hepatotoxicity. The sensitizing effect of SULT2B1b on APAP-induced liver 
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injury is a surprise, considering that sulfation of APAP has been established as an important 

mechanism for the detoxification of APAP. For example, we have previously reported the 

attenuation of APAP toxicity by the activation LXRα (Saini et al., 2011), which was associated 

with the induction of Sult2a1. 

 

The mechanism by which SULT2B1b sensitizes mice to APAP toxicity remains to be clearly 

defined. APAP may not be a substrate of SULT2B1b in vitro, according to a published report 

(Yamamoto et al., 2015). However, we cannot exclude the possibility that APAP at our used 

pharmacological concentrations is a substrate of SULT2B1b in vivo, a notion supported by the 

increased serum concentration of APAP-sulfate in TG mice 24 hours after the APAP treatment 

(Fig. 5E). Knowing that SULT2B1b suppresses LXR activity by sulfonating and deactivating the 

endogenous LXR agonists (Bensinger et al., 2008; Villablanca et al., 2010), and activation of 

LXR accelerates APAP clearance and attenuates APAP toxicity (Saini et al., 2011), we initially 

hypothesized that the sensitizing effect of SULT2B1b might be due to the inhibition of LXR. 

However, we found the expression of LXRα and its primary target genes was not affected by the 
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transgene (Fig. 5C). SULT2B1b transgene or ablation also had little effect on the expression of a 

panel of nuclear receptors and CYP enzymes that are known to impact APAP metabolism and 

toxicity, except that Ugt1 was up-regulated in APAP-treated TG mice for a yet to be defined 

reason (Fig. 5). The decreased GSH level in APAP-treated TG mice (Fig. 5D) suggested that 

overexpression of SULT2B1b may have compromised the replenishment of GSH via a yet to be 

characterized mechanism. The hepatic concentrations of parent APAP, APAP-sulfate, APAP-

glucuronide and APAP-Cys at 1 hour post-APAP treatment showed no difference between the 

WT and TG mice. The serum concentrations of two nontoxic metabolites APAP-sulfate and 

APAP-glucuronide were elevated at 24 hours post-APAP in the TG mice, but they were not 

affected in the KO mice. These results indicate that the effect of the SULT2B1b transgene on 

APAP metabolism might be time dependent. A future detailed pharmacokinetic analysis is 

necessary to conclude the effect of SULT2B1b on APAP metabolism.  

 

The sensitizing effect of HNF4α is also intriguing. On one hand, the sensitization was 

predictable based on the positive regulation of Sult2B1b by HNF4α as we have recently reported 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on April 3, 2019 as DOI: 10.1124/mol.118.114819

 at A
SPE

T
 Journals on M

arch 13, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


 MOL #114819 

 25 

(Bi et al., 2018), and the sensitizing effect of HNF4α was Sult2B1b dependent (Fig. 4). On the 

other hand, the aggravation of APAP-induced liver injury by HNF4α was a surprise, considering 

the reported hepatoprotective effect of HNF4α in liver injury induced by xenobiotic toxicants 

(Beggs et al., 2016), alcohol and MCD diet (Xu et al., 2016), as well as in the context of NASH, 

ALF and HCC (Baciu et al., 2017; Hang et al., 2017; Shi et al., 2014; Vallianou et al., 2016). To 

our knowledge, it is the first demonstration that HNF4α aggravated APAP-induced liver injury 

through its transcriptional regulation of SULT2B1b. It has been reported that HNF4α is critically 

involved in PXR- and CAR-mediated transcriptional activation of CYP3A (Tirona et al., 2003), 

and activation of PXR and CAR and the induction of CYP3A are known to sensitize mice to 

APAP toxicity (Cheng et al., 2009; Guo et al., 2004; Zhang et al., 2002). Although the 

expression of PXR, CAR and Cyp3a11 was not affected in APAP-treated TG or KO mice, we 

cannot exclude the possibility that PXR, CAR and Cyp3a may play a role in mediating the 

sensitizing effect of HNF4α on APAP toxicity. Female mice were used in this study. Our study 

focused on APAP toxicity in terms of its metabolism. It has been reported that APAP 
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metabolism does not contribute to gender difference in the event of APAP overdose (Dai et al., 

2006). Further studies are needed to prove whether the phenotype is sex specific. 

 

In summary, we have uncovered a novel function of SULT2B1b and its regulation by HNF4α in 

APAP-induced acute liver injury. Our results suggest that SULT2B1b induction might be a risk 

factor for APAP hepatotoxicity. This notion is consistent with the report that nonalcoholic fatty 

liver disease (NAFLD) sensitized rodents to APAP-induced liver injury (Michaut et al., 2014), 

because NAFLD and its associated metabolic liver disease induce the hepatic expression of 

Sult2B1b (Shi et al., 2014). 
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Figure legends 

Figure 1. Transgenic overexpression of SULT2B1b in the liver aggravates APAP-induced 

liver injury. (A) Representative H&E staining on liver paraffin sections from WT and 

SULT2B1b TG mice treated with vehicle (left, original magnification ´100) or APAP (middle, 

original magnification ´100) for 24 hours. Shown on the right is enlarged view of boxed region 

in middle panels highlighting the APAP-induced centrilobular necrosis. Shown on the bottom 

left is the quantification of the necrotic areas. n=5 per group. (B and C) Serum levels of ALT (B) 

and AST (C) in WT and TG mice treated with vehicle or APAP. (D) Representative images of 

TUNEL staining in liver sections from WT and TG mice at 24 hours after the vehicle or APAP 

treatment (original magnification ´200). (E) Relative hepatic mRNA expression of Pcna, Ki67, 

C-myc, Ccnd1, and Ccne1. (F) Relative hepatic mRNA expression of Il-6 and Il-1β. Data are 

expressed as mean ± SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.005 (considered statistically 

significant) upon Bonferroni correction, compared to WT within the same drug treatment (B and 

C) or the same gene (E and F) as labeled.  
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Figure 2. Ablation of Sult2B1b protects mice from APAP-induced liver injury. (A) 

Representative H&E staining on liver paraffin sections from WT and Sult2B1b KO mice treated 

with vehicle (left, original magnification ´100) or APAP (middle, original magnification ´100) 

for 24 hours. Shown on the right is enlarged view of boxed region in middle panels highlighting 

the APAP-induced centrilobular necrosis. Shown on the bottom left is the quantification of the 

necrotic areas. n=3 for WT-vehicle and KO-vehicle, n=8 for WT-APAP and KO-APAP. (B and 

C) Serum levels of ALT (B) and AST (C) in WT and KO mice treated with vehicle or APAP. 

(D) Representative images of TUNEL staining in liver sections from WT and KO mice at 24 

hours after the vehicle or APAP treatment (original magnification ´200). (E) Relative hepatic 

mRNA expression of Pcna, Ki67, C-myc, Ccnd1, and Ccne1. (F) The expression of Ki67 was 

detected by immunohistochemistry with arrows indicating the positive stainings. (G) Relative 

hepatic mRNA expression of Il-6 and Il-1β. Data are expressed as mean ± SEM. *, P < 0.05; **, 

P < 0.01; ***, P < 0.005 (considered statistically significant) upon Bonferroni correction, 

compared to WT within the same drug treatment (B and C) or the same gene (E and G) as 

labeled.  
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Figure 3. Overexpression of Hnf4α induces Sult2B1b and sensitizes mice or primary 

hepatocytes to APAP-induced injury. (A) Hepatic expression of Sult2B1b and Hnf4α in WT 

mice infected with Ad-Ctrl or Ad-Hnf4 and treated with APAP was measured by Western blot 

analysis. n=3 per group. (B) Representative gross appearance (top) and H&E staining on liver 

paraffin sections of Ad-Ctrl+APAP and Ad-Hnf4+APAP WT mice (middle, original 

magnification ´100), and enlarged view of boxed region in middle panels highlighting the 

APAP-induced centrilobular necrosis (bottom). Shown below is the quantification of the necrotic 

areas. n=3 for Ad-Ctrl, n=5 for Ad-Hnf4. (C) Serum levels of ALT and AST in WT mice 

infected with Ad-Ctrl or Ad-Hnf4α. (D) The mRNA expression of Hnf4α and Sult2B1b in WT 

primary hepatocytes infected with Ad-Ctrl or Ad-Hnf4α. (E) The percentage of ALT release 

from WT primary hepatocytes infected with Ad-Ctrl or Ad-Hnf4α and treated with 5 mM APAP 

for 24 hours. (F) MTT assay on primary hepatocytes described in (E). Data are expressed as 

mean ± SEM. *, P < 0.05, **, P < 0.017 (considered statistically significant) upon Bonferroni 

correction, all compared to Ad-Ctrl as labeled.  
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Figure 4. The sensitizing effect of HNF4α on APAP-induced injury is Sult2B1b dependent. 

(A) Hepatic expression of Sult2B1b in Sult2B1b KO mice infected with Ad-Ctrl or Ad-Hnf4 and 

treated with APAP was measured by Western blot analysis. n=3 per group. (B) Representative 

gross appearance (top) and H&E staining on liver paraffin sections of Ad-Ctrl+APAP and Ad-

Hnf4+APAP KO mice (middle, original magnification ´100), and enlarged view of boxed region 

in middle panels highlighting the APAP-induced centrilobular necrosis (bottom). Shown below 

is the quantification of the necrotic areas. n=3 for Ad-Ctrl, n=5 for Ad-Hnf4. (C) Serum levels of 

ALT and AST in KO mice infected with Ad-Ctrl or Ad-Hnf4α. (D) The mRNA expression of 

Hnf4α in KO primary hepatocytes infected with Ad-Ctrl or Ad-Hnf4α. (E) The percentage of 

ALT release from KO primary hepatocytes infected with Ad-Ctrl or Ad-Hnf4α and treated with 

5 mM APAP for 24 hours. (F) MTT assay on primary hepatocytes described in (E). Data are 

expressed as mean ± SEM. n.s., statistically not significant, all compared to Ad-Ctrl as labeled.  
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Figure 5. Mechanism by which SULT2B1b sensitizes mice to APAP-induced liver injury.  

(A and B) Relative mRNA expression of a panel of Phase I and Phase II enzymes (A) and a 

panel of nuclear receptors (B) in the livers of WT, SULT2B1b TG and KO mice treated with 

APAP. n=3 per group. (C) Relative mRNA expression of LXRα and its target genes Fas, Scd1 

and Srebp-1c in livers from WT, TG and KO mice treated with APAP. n=3 per group. (D)Total 

liver GSH content and GSSG/GSH ratio in WT, TG and KO mice treated with APAP. n=3 per 

group. (E) The contents of APAP-sulfate and APAP-glucuronide in the serum from WT and TG 

mice at 24 hours after the APAP treatment. n=3 per group. (F) The contents of parent APAP, 

APAP-sulfate, APAP-glucuronide and APAP-Cys in the liver from WT and TG mice at 1 hour 

post-APAP treatment. n=3 per group. Data are expressed as mean ± SEM. *, P < 0.05; **, P < 

0.01; ***, P < 0.003 (considered statistically significant) upon Bonferroni correction for (A), (B) 

and (C); *, P < 0.05; **, P < 0.01 (considered statistically significant) for (D); *, P < 0.05, **, P 

< 0.025 (considered statistically significant) upon Bonferroni correction for (E); and *, P < 0.01 

(considered statistically significant) upon Bonferroni correction for (F); n.s., statistically not 
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significant, all compared to WT-APAP within the same gene (A-C) or the same parameter (D-F) 

as labeled. 
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