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ERK  Extracellular signal–regulated kinase 

HSC  Haematopoietic stem cell 

MIF  Macrophage migration inhibition factor 
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3. Abstract 

Atypical chemokine receptor 3 (ACKR3), previously known as C-X-C chemokine receptor 

type 7 (CXCR7), has emerged as a key player in several biological processes particularly 

during development. Its CXCL11 and CXCL12 scavenging activity and atypical signalling 

properties together with a new array of other non-chemokine ligands have established ACKR3 

as a main regulator of physiological processes at steady state and during inflammation. Here, 

we present a comprehensive review of ACKR3 expression in mammalian tissues in search of 

a possible connection with the receptor function. Besides the reported roles of ACKR3 during 

development, we also discuss the potential contribution of ACKR3 to the function of the 

immune system, focusing on the myeloid lineage. 
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4. Introduction 

This review focuses on the trio formed by CXCL12 and its two receptors, CXCR4 and 

CXCR7/ACKR3, with a particular emphasis on the latter one, which belongs to the atypical 

chemokine receptor subfamily. Since the 1990s, with CXCR4 being discovered as a co-

receptor for HIV entry (Feng et al., 1996), the CXCL12/CXCR4 axis has been extensively 

studied in numerous homeostatic and pathological settings including organogenesis, leukocyte 

trafficking and cancer. ACKR3 was first known as an orphan receptor named receptor dog 

cDNA 1 or RDC1 (Heesen et al., 1998) and was later adopted into the chemokine receptor 

family as CXCR7, the second receptor for CXCL12 (Balabanian et al., 2005) and also CXCL11 

(Burns et al., 2006), before being renamed ACKR3 due to its atypical non-G protein dependent 

signalling (Bachelerie et al., 2014). Since then, compelling evidence has underscored the 

regulatory function of ACKR3 on the CXCL12/CXCR4 signalling axis. Initial studies in zebrafish 

models revealed that ACKR3 acts as a scavenger receptor that binds and internalises 

CXCL12, thus indirectly modulating CXCR4 function by modifying chemokine bioavailability 

(Dambly-Chaudière et al., 2007; Valentin et al., 2007; Boldajipour et al., 2008; Donà et al., 

2013). Additionally, ACKR3 may have direct functions in response to CXCL12 as a β-arrestin-

biased signalling receptor (Rajagopal et al., 2010), although β-arrestin-mediated signalling 

downstream of ACKR3 remains to be demonstrated in vivo. Furthermore, with the identification 

of new non-chemokine ligands, including macrophage migration inhibitory factor (MIF) or 

intermediate opioid peptides, ACKR3 has emerged as a key player in homeostatic processes 

during embryogenesis and adult life but also in pathological inflammatory and tumour contexts. 

Here, we first summarise the state of the art on ACKR3 expression with regard to human and 

rodent tissues and its role in development, before discussing its potential contribution to the 

function of the immune system. In particular, we focus on myeloid cells, both at homeostasis 

and in pathological settings, including inflammatory conditions and breast cancer.  

 

5. ACKR3 expression in mammalian tissue 
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To address the question of ACKR3 expression, mice have been genetically modified to 

investigate in which cells and tissues the Ackr3 promoter is active (Table 1). These mouse 

models include replacement of the endogenous Ackr3 coding region by either a β-

galactosidase (LacZ) reporter (Gerrits et al., 2008) or an enhanced green fluorescent protein 

(EGFP) sequence (Cruz-Orengo et al., 2011). These models also include the Ackr3-EGFP 

bacterial artificial chromosome (BAC) mouse model, where an Ackr3 promoter-EGFP fusion 

sequence was inserted into a random location in the genome. In this case, EGFP expression 

is driven by Ackr3 promoter activity, while leaving the endogenous Ackr3 locus intact (Gong et 

al., 2003; Sánchez-Alcañiz et al., 2011). 

In parallel, several groups have investigated Ackr3 expression at the transcriptional level 

by means of northern blot, real time polymerase chain reaction, or in situ hybridization (Table 

2) and at the protein level by means of immunofluorescence, immunohistochemistry or flow 

cytometry (Table 2). Ackr3 mRNA is mostly detected in mouse heart, kidney, spleen, lung and 

brain (Table 2) and is transiently expressed during embryogenesis, in accordance with different 

reporter mouse models (Table 1). To summarise, by combining various techniques, ACKR3 

mRNA and protein have been detected i) in mesenchymal stromal cells, ii) in brain-resident 

cells including astrocytes, glial and neuronal cells, iii) in cells of the vascular system and more 

specifically cells from vascular smooth muscle and venous endothelium and of particular 

interest, iv) in immune cell populations. In the immune system, ACKR3 mRNA is detected 

using transcriptomic approaches in haematopoietic lineages, in both lymphoid (e.g. B cells) 

and myeloid (e.g. macrophages) cells. However, in EGFP reporter mouse models, the Ackr3 

promoter-dependent signal cannot be distinguished from background in any of the studied 

immune cell subsets in steady state (i.e. CD45+, CD19+ B cells, CD4+ and CD8+ T cells, 

CD11b+ and CD11c+ myeloid cells) (Cruz-Orengo et al., 2011). This was confirmed in LacZ 

mouse models (Berahovich et al., 2014). Furthermore, assessing ACKR3 protein expression 

in native conditions poses a technical challenge due to its constitutive recycling between the 

membrane and the endosomal compartment, leading to a predominant intracellular 

localisation. This is a limitation for antibody generation and validation (Berahovich et al., 2010) 
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and a potential source of discrepancies reported in studies related to ACKR3 expression and 

function. For instance, ACKR3 protein was not detected either in human and mouse leukocyte 

subsets in peripheral blood (Berahovich et al., 2010). However, ACKR3 protein was detected 

in human secondary lymphoid organ-derived B cells and dendritic cells (Infantino et al., 2006). 

 

6. ACKR3 function: from genetically modified mice to non-chemokine ligands 

Determining when and where ACKR3 is expressed has led to greater understanding of 

the functions that ACKR3 might be exerting. In particular, the expression pattern of ACKR3 

may hint towards a functional role in such cells or tissues. These functions could have a direct 

effect on ACKR3-expressing cells either through non-canonical signalling pathways or 

modulation of CXCR4 functions, or in a paracrine way via the modulation of CXCL12 and 

CXCL11 levels, impacting nearby-cell function through CXCR4 and CXCR3 respectively. 

Valuable information about the function of ACKR3 was first provided by an analysis of the 

effects following constitutive and cell-type conditional Ackr3 gene deletion in various mouse 

models (Table 1). Subsequently, the identification of other non-chemokine ligands has 

broadened our understanding of ACKR3 biology, particularly in terms of the role of ACKR3 

beyond the chemokine system. In the following section, we discuss how the study of knockout 

mouse models and non-chemokine ligands has led to further insights into the functions of 

ACKR3. 

 

6.1. Lessons from constitutive and conditional knock-out models 

Most Ackr3-/- mice develop normally in early embryonic stages, but die either perinatally 

or in utero in late developmental stages, usually from embryonic gestation day E17.5, due to 

cardiovascular complications (Sierro et al., 2007; Yu et al., 2011; Trousse et al., 2015). 

Accordingly, it seems that ACKR3, similarly to CXCR4 and CXCL12, is essential to normal 

mouse development and physiology and that it plays a complementary or non-redundant role 

with regard to CXCR4. However, the lethal phenotype obtained in the C57Bl/6 background is 

less severe on a mixed genetic background (129 Sv/Evbrd x C57Bl/6) with a survival rate of 
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approximately 30% (Gerrits et al., 2008). This might be linked to CXCL11-associated ACKR3 

functions, because the expression of this chemokine ligand is absent in C57Bl/6 mice (Sierro 

et al., 2007). Considering the cardiovascular and cerebral defects observed in Ackr3-deficient 

mice, a large body of work has focused on ACKR3 contribution to heart and brain physiology. 

During both heart and brain development, Ackr3 undergoes a change in expression pattern 

after E14.5, which coincides with the onset of mouse death (Sierro et al., 2007; Gerrits et al., 

2008; Sánchez-Alcañiz et al., 2011; Wang et al., 2011; Yu et al., 2011). 

Two studies suggest that a link may exist between Ackr3 expression and the control of 

cell proliferation in heart tissue. For example, in constitutive Ackr3-/- mice, an increased cell 

proliferation prevented heart valve thinning that led to a lethal cardiovascular phenotype (Yu 

et al., 2011). Moreover, in another study, 25% of surviving adult Ackr3-/- mice suffered from 

cardiac hyperplasia (Gerrits et al., 2008). Of note, migration and apoptosis of semilunar valve 

mesenchymal cells remained normal from E14 to E18.5 in Ackr3-/- mice. In contrast, during 

brain development, constitutive and conditional loss of Ackr3 in GABAergic neurons (Table 1) 

led to an abnormal distribution of interneurons in the cortex, suggesting a link between Ackr3 

expression and neuron migration (Sánchez-Alcañiz et al., 2011; Wang et al., 2011; Trousse et 

al., 2015). ACKR3 could have a cell intrinsic function as suggested by ERK1/2 phosphorylation 

in cultured neurons, likely downstream of ACKR3 (Wang et al., 2011). However, it remains to 

be determined whether ACKR3-mediated ERK1/2 phosphorylation occurs in vivo and whether 

it is relevant during brain development. Alternatively, the role of ACKR3 in interneuron 

positioning could occur through cell-extrinsic effects as a scavenger receptor. Ackr3-deficiency 

results in increased CXCL12 protein levels but unchanged Cxcl12 mRNA levels in cortical 

homogenates (Sánchez-Alcañiz et al., 2011). Failure to maintain a CXCL12 gradient leads to 

accumulation of migrating interneurons in inappropriate locations in the cortex. Moreover, the 

abnormal distribution of interneurons was rescued when Ackr3-/- interneurons were 

transplanted into Ackr3+/+ brain, suggesting that ACKR3 expression in other cells can rescue 

the phenotype (Sánchez-Alcañiz et al., 2011). Furthermore, a recent report has provided 

mechanistic insights into ACKR3-mediated CXCL12 endocytosis in interneurons by 
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demonstrating that receptor phosphorylation was required for this process, whereas β-

arrestins were dispensable (Saaber et al., 2019). Altogether, these findings in Ackr3-deficient 

mice support a role for ACKR3 as a scavenging receptor, in particular in the brain. Even though 

no obvious defects in the immune system were found in these mouse models, this aspect was 

not fully explored in the studies, implying that a knowledge gap might exist in this field 

(discussed in section 7).  

 

6.2. Microenvironment-dependent functions of ACKR3 and non-chemokine ligands  

Differences observed in heart and brain tissues in Ackr3-/- mice can, at least partially, be 

explained by the microenvironment having an impact on the biological effects exerted by 

ACKR3. ACKR3 tissue-dependent functioning might be related to its capacity to interact with 

several ligands and therefore could be dependent on the surrounding cells producing or 

processing such ligands. Firstly, within the chemokine system, CXCL12 displays six isoforms 

in humans and three in mice due to alternative splicing. These isoforms have different C-

terminal extensions, and have different expression patterns and functions (discussed in 

Janssens et al., 2018). Secondly, CXCL12 isoforms are processed post-translationally by the 

microenvironment producing forms of CXCL12 with different binding and signalling properties 

on CXCR4 and ACKR3 (Peng et al., 2012; Janssens et al., 2017, 2018; Szpakowska et al., 

2018b). Additionally, the microenvironment changes during disease conditions. For example, 

CXCL11, which is a ligand for CXCR3 as well as for ACKR3, is normally not detectable in 

physiological conditions but an inflammatory context, in which cytokines such as interferon are 

produced, can induce CXCL11 expression (Flier et al., 2001; Müller et al., 2010; Van 

Raemdonck et al., 2015; Singh et al., 2016). This implies that ACKR3 function may vary in 

pathological conditions compared to steady state (Figure 1), adding another layer of 

complexity. Lastly, ACKR3 tissue-dependent functions likely depend on the presence of other 

reported endogenous ligands of ACKR3 outside the chemokine system, including MIF 

(Alampour-Rajabi et al., 2015), intermediate opioid peptides (Ikeda et al., 2013) and possibly 

proteins in the adrenomedullin pathway (Klein et al., 2014). 
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MIF is an inflammatory cytokine that lacks the structural requirements to qualify as a 

chemokine. However, a previous study has suggested it should be considered as a pseudo-

CXC chemokine (Bernhagen et al., 2007) as it binds with high affinity to CD74 (Kd ≈ 9 nM), 

CXCR2 (Kd ≈ 1.4 nM), CXCR4 (Kd ≈ 19.8 nM) and to ACKR3 in the nanomolar range (Kd not 

determined) (Leng et al., 2003; Alampour-Rajabi et al., 2015; Bernhagen, 2018). MIF has a 

physiological role as a chemoattractant (Bernhagen et al., 2007), and is involved in innate and 

adaptive immune responses by promoting macrophage activation and B cell survival (Gore et 

al., 2008). Moreover, MIF is a mediator in several inflammatory conditions and cancers in an 

autocrine and paracrine manner by promoting tumour growth (Nobre et al., 2017) and inducing 

metastasis through CXCR4 (Dessein et al., 2010). Furthermore, MIF/ACKR3 signalling has 

been studied in platelets, where it prevents apoptosis (Chatterjee et al., 2014), providing 

evidence for a role of ACKR3 in the haematopoietic system. 

Intermediate opioid peptides such as BAM22 are produced in the adrenal cortex by 

subcapsular cell hyperplasia cells and BAM22 has been shown to displace CXCL12 from 

ACKR3 (IC50 = 32.2 nM) (Szpakowska et al., 2018a). The BAM22/ACKR3 signalling axis has 

a critical role in the modulation of circulating glucocorticoids. This occurs through the increase 

of the amplitude of adrenocorticotropic hormone (ACTH)-induced glucocorticoid diurnal 

oscillation in females (Ikeda et al., 2013). ACKR3 is highly expressed in the adrenal 

glucocorticoid-producing cells especially in female mice compared to males in support of the 

sex differences of the BAM22/ACKR3-dependent glucocorticoid oscillations. 

Finally, adrenomedullin is a peptide hormone involved in angiogenesis and is implicated 

in cardiovascular diseases. A link between adrenomedullin and ACKR3 pathways may exist 

on the basis that haploinsufficiency of adrenomedullin partially rescued the lethal defects in 

Ackr3-/- mice by normalising the cardiac hyperproliferation (Klein et al., 2014). ACKR3 was 

suggested as an adrenomedullin scavenger, but a recent paper showed that adrenomedullin 

does not displace CXCL12 from ACKR3 within the 6pM to 1µM range (Szpakowska et al., 

2018a). However, the presence of ACKR3 inhibited canonical adrenomedullin signalling (Klein 
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et al., 2014), suggesting a crosstalk between adrenomedullin and ACKR3 pathways that 

remains to be fully explored. 

 

7. Potential role of ACKR3 within the immune system at steady state and during 

inflammation 

The absence of obvious immune-haematopoietic defects in the available Ackr3-/- mouse 

models does not exclude a role for ACKR3 in the immune system. Evidence suggests that the 

CXCL12/CXCR4 signalling axis can regulate the function of the immune system, notably by 

controlling immune cell subset migration and compartmentalisation (Wei et al., 2006; 

Balabanian et al., 2012), or haematopoietic stem cell (HSC) homing, retention, and quiescence 

in bone marrow (BM) (Sugiyama et al., 2006). ACKR3 mRNA and protein are also expressed 

in certain immune cell subsets such as B cells and myeloid cells, as reported by several groups 

(Table 2). ACKR3 might also be involved in the circadian oscillation of CXCL12 expression 

levels, which regulate immune cell trafficking from and to BM (Figure 1). In a similar manner 

to glucocorticoids, CXCL12 transcript and protein levels rhythmically oscillate in BM with light-

dark cycles (Katayama et al., 2006; Méndez-Ferrer et al., 2008, 2010). This oscillation 

regulates retention in and mobilisation from BM of CXCR4-expressing HSCs, which are 

released during sleep when CXCL12 levels are low and return to BM when CXCL12 levels 

have increased again (Méndez-Ferrer et al., 2010). CXCL12 is produced by osteoblasts in the 

bone fraction, endothelial cells around both endosteal and vascular niches, and perivascular 

mesenchymal stromal cells in the marrow fraction, with the latter representing a major 

contributor to the CXCL12 pool (Itkin et al., 2016). Depending on the production site, CXCL12 

regulates either HSC maintenance or retention (Itkin et al., 2016; Asada et al., 2017). 

Considering that the ACKR3 scavenging function shapes CXCL12 gradients, the contribution 

of ACKR3 to the circadian oscillation of CXCL12 levels remains an open question (Figure 1). 

Although most of this evidence relates to CXCL12/CXCR4 function, they indirectly point 

towards a role for ACKR3 in some processes within the immune system, both at steady state 
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and in inflammatory settings. In the following sections we explore this apparent knowledge gap 

focusing on myeloid cells. 

 

7.1. Potential role for ACKR3 in the myeloid compartment at steady state 

Myeloid cells, such as neutrophils, dendritic cells or monocytes are key players in 

innate immunity and CXCL12/CXCR4 tightly regulate their homeostasis (De Filippo and 

Rankin, 2018). In particular, this includes their retention in BM and functioning in peripheral 

tissues (Chong et al., 2016; Evrard et al., 2018). CXCL12 promotes the extravasation of 

monocytes and their in vitro differentiation (Sánchez-Martín et al., 2011; Chatterjee et al., 

2015) as well as the egress of plasmacytoid dendritic cells from BM (Chopin et al., 2016). 

Among myeloid cells, neutrophils are the most abundant type in peripheral blood. They are 

produced and released from BM following daily oscillations and consequently, neutrophil 

numbers in circulation vary during light-dark cycles (Ella et al., 2016). Neutrophils have a short 

lifespan in circulation (~12 hours) and when senescent, “aged” neutrophils express high levels 

of CXCR4 allowing them to migrate back to BM to be eliminated in a process called clearance 

(Figure 1) (Casanova-Acebes et al., 2013). Their egress from BM might be partly due to 

changes in CXCL12 levels with the circadian rhythms (Méndez-Ferrer et al., 2008; Ella et al., 

2016), as described for HSCs. However, other mechanisms may account for neutrophil release 

as it precedes CXCL12 oscillations (Casanova-Acebes et al., 2013). Recently, clock genes 

have been described as intrinsic aging regulators in neutrophils in combination with CXCR2 

and CXCR4 (Adrover et al., 2019). Disruption of the aging process has consequences on 

immune cell trafficking at steady state and immune defence against infection. While ACKR3 is 

detected in neutrophils, further studies are needed to determine its expression levels during 

neutrophil maturation and its possible contribution to this process. There is also a case for 

exploring whether cells of the microenvironment (e.g. cells in BM niches) express ACKR3, and 

how these factors could be related to neutrophil biology.  

 

7.2. ACKR3 and the myeloid compartment in inflammatory settings 
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ACKR3 expression is usually faint or undetectable at steady state in the endothelium 

and in myeloid cells, but can be up-regulated during inflammation, for instance by 

proinflammatory cytokines such as IL-8 (Singh and Lokeshwar, 2011) or IL-1β in vitro 

(Watanabe et al., 2010) and by environmental cues such as lipopolysaccharide (LPS) (Cao et 

al., 2016; Konrad et al., 2017; Ngamsri et al., 2017) or during infection by oncoviruses 

(reviewed in Freitas et al., 2014). Along this line, ACKR3 is highly upregulated during 

monocyte-to-macrophage differentiation in vitro, switching to a more pro-inflammatory cell 

phenotype (Wanshu et al., 2013; Chatterjee et al., 2015). Another example can be found during 

central nervous system inflammation, where ACKR3 is upregulated in endothelial cells of the 

blood-brain barrier (Cruz-Orengo et al., 2011). Antagonizing the scavenging activity of ACKR3 

using small molecule CCX771 blocked leukocyte infiltration in the parenchyma, including that 

of CD11b+ myeloid cells, preventing chronic inflammation and therefore improving disease 

recovery (Cruz-Orengo et al., 2011). This could be associated with a restoration of the CXCL12 

polarity along the blood-brain barrier, which is essential for its integrity and for preventing 

infiltration of CXCR4+ cells (McCandless et al., 2008).  

Furthermore, the role of ACKR3 has been explored in pulmonary inflammation with 

regard to the lung epithelial barrier function and the recruitment of myeloid cells (Figure 1). In 

an acute inflammation mouse model induced by LPS inhalation, ACKR3 protein is upregulated 

in the lung tissue, both in epithelial and endothelial cells (Ngamsri et al., 2017). However, in 

chronic lung injury mouse models induced upon repeated bleomycin injection or hydrochloric 

acid inhalation, ACKR3 mRNA and protein levels are decreased in endothelial cells (Cao et 

al., 2016). These findings indicate that ACKR3 may play a role in the early stages of 

inflammation. Interestingly, in acute inflammation, CXCL12 mRNA and total protein levels in 

lung homogenates were increased (Cao et al., 2016; Konrad et al., 2017; Ngamsri et al., 2017) 

and at least mRNA levels remained high in chronic inflammatory settings (Cao et al., 2016). 

Regarding immune cell recruitment, neutrophils were recruited to the lung tissue in acute 

inflammation (Konrad et al., 2017; Ngamsri et al., 2017), whereas macrophages were recruited 

in chronic inflammation (Cao et al., 2016). However, these studies did not explore neutrophil 
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and macrophage recruitment in both short and long-term inflammatory processes. 

Pharmacological modulation of ACKR3 with either CCX771 (Ngamsri et al., 2017) or TC14012 

(Cao et al., 2016) prevented microvascular permeability and further alveolar epithelial damage. 

Although both molecules induce β-arrestin recruitment to ACKR3, the downstream signalling 

pathways have not been assessed to our knowledge (Zabel et al., 2009; Montpas et al., 2015). 

These molecules can be considered as functional antagonists due to their capacity to displace 

CXCL12 from ACKR3, thus inhibiting the decoy activity of the receptor. While the potential 

therapeutic benefit of targeting ACKR3 is promising, it cannot be claimed so far which function 

of ACKR3 contributes to disease improvement, i.e. as a signalling or scavenging receptor. It 

will be essential to determine where ACKR3 is being expressed using reporter mouse models 

in order to decipher its potential protective or pro-inflammatory role in central nervous system 

and pulmonary inflammatory diseases.  

Lastly, chronic inflammation can promote the progression of cancer (Hanahan and 

Weinberg, 2011) and is often initiated and maintained by infiltrating immune cells that secrete 

cytokines and chemokines in the tumour microenvironment (Nagarsheth et al., 2017). For 

example, in breast cancer, the microenvironment likely induces myeloid-derived suppressor 

cells that contribute to immune evasion and consequently sustain tumour growth (reviewed in 

Markowitz et al., 2013). CXCL12 also plays an important role in breast cancer. Indeed, 

CXCL12 production by cancer-associated fibroblasts (CAFs) enhances proliferation and 

survival of cancer cells as well as tumour growth and angiogenesis (Orimo et al., 2005). 

Additionally, CXCL12 facilitates tumour cell intravasation by affecting vasculature integrity 

(Ahirwar et al., 2018) and contributes to immune evasion by recruitment of T cells, which 

differentiate into immunosuppressive regulatory T cells (Tregs) in the tumour (Su et al., 2017; 

Costa et al., 2018). Furthermore, sites in the body that constitutively display high 

concentrations of CXCL12 such as lung or BM are common metastatic destinations for breast 

cancer cells (Müller et al., 2001). Interestingly, blockade of CXCR4 with antagonist AMD3100 

in breast cancer mouse models reduced the number of Tregs and neutrophils in the tumour, 

improving the immunosuppressive microenvironment (Chen et al., 2019). CXCR4 blockade 
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further reduced activated CAF numbers and increased the transcription of genes associated 

with anti-tumour immunity such as Ifng and Gzma in the tumour mass. 

ACKR3 is upregulated in several types of cancer including breast cancer, frequently in 

tumour-associated vasculature as well as in the primary tumours (Freitas et al., 2014). The 

clinical relevance of ACKR3 in breast cancer has been discussed elsewhere as a part of the 

mini-review series ‘From insight to modulation of CXCR4 and ACKR3 (CXCR7) function’ 

(Neves et al., 2019). Studies using mouse orthotopic xenografts suggest that ACKR3 might 

play a role in maintaining proliferation in the primary tumour, while decreasing intravasation of 

tumour cells and thus reducing metastasis (Hernandez et al., 2011). Furthermore, ACKR3 

endothelial expression is likely involved in preventing breast cancer metastasis (Stacer et al., 

2016). Collectively, these findings highlight the dual role of ACKR3 either expressed in the 

primary tumour or in the tumour-associated vasculature. Further research is warranted to 

understand the underlying mechanisms of ACKR3 that impact the different stages of breast 

cancer progression and whether this occurs through ACKR3 itself or via modulation of the 

CXCL12/CXCR4 axis. ACKR3 could shape CXCL12 (and likely CXCL11) availability within the 

tumour due to its scavenging activity. This could decrease tumour cell intravasation and 

metastasis as reported (Hernandez et al., 2011; Stacer et al., 2016; Ahirwar et al., 2018) and 

potentially immune cell infiltration. In essence, decreasing CXCL12 availability could inhibit 

CXCR4 responses and thus reverse the immunosuppressive microenvironment in breast 

cancer, including reduced Treg and increased cytotoxic T cell numbers. 

 

8. Discussion 

After being de-orphaned in 2005, CXCR7 was proposed to act as an atypical chemokine 

receptor, ACKR3, with a primary role as a decoy receptor for CXCL12 and CXCL11, whose 

function was to merely internalise the ligands. Over the years, accumulating evidence has 

supported the concept of ACKR3 being a major regulator of the CXCL12/CXCR4 axis and 

possibly CXCL11/CXCR3. Furthermore, in some cell lines ACKR3 displays β-arrestin-biased 

signalling capacity in vitro in response to its chemokine and non-chemokine ligands, an 
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observation mainly supported by β-arrestin recruitment and ERK1/2 phosphorylation studies 

(Zabel et al., 2009; Rajagopal et al., 2010; Wang et al., 2011; Alampour-Rajabi et al., 2015). 

However, ERK1/2 phosphorylation has not been formally demonstrated to be β-arrestin-

mediated for ACKR3 and particularly in in vivo settings. Moreover, this concept has recently 

been challenged, as a panel of known β-arrestin-biased receptors unexpectedly required 

functional G proteins to elicit ERK1/2 phosphorylation activity, whereas β-arrestins were not 

essential (Grundmann et al., 2018). This can be highly relevant to ACKR3, which is already 

known to engage with, but not activate, G proteins (Levoye et al., 2009). In addition, studies 

on CRISPR-Cas9-mediated β-arrestin knockout cell lines have shown that β-arrestins might 

not be necessary for ERK1/2 phosphorylation (Luttrell et al., 2018). Instead, they may act as 

regulators that fine-tune ERK1/2 phosphorylation depending on the cell type and its strength 

in potentiating G-protein or β-arrestin-mediated signalling (Luttrell et al., 2018). Altogether, 

these recent findings raise questions about the molecular mechanisms by which ACKR3 is 

exerting its still underappreciated functions in homeostatic processes, e.g. in hormonal and 

neuronal systems and potentially in the haematopoietic system. 

To conclude, ACKR3 expression and function in immune cells remain poorly understood, 

and future research should focus on i) unambiguously characterising the ACKR3 expression 

patterns in physiological and pathological contexts, ii) clarifying the mechanisms by which 

ACKR3 acts as a signalling or a scavenging receptor and iii) understanding its function in 

homeostatic processes, such as the circadian oscillation of CXCL12 levels or neutrophil 

trafficking, as well as in pathological conditions (Figure 1). Importantly, inflammation-related 

pathological conditions can highly dysregulate ACKR3 expression. Thus, mechanistically 

deciphering the precise contribution of ACKR3 to immune cell recruitment in inflammatory 

context should identify ACKR3 as a novel therapeutic target in various diseases and cancer. 
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12. Legends for figures. 

Figure 1. Potential roles of ACKR3 in steady state and inflammation within the myeloid 

cell compartment. 

Neutrophils are produced in bone marrow (BM) from haematopoietic stem cells during 

granulopoiesis. They are released into the bloodstream following circadian oscillations and 

increase their surface CXCR4 expression while aging over time. After approximately 12 hours 

in circulation, at the end of the dark phase, aged CXCR4high neutrophils migrate back to BM to 

be eliminated. As part of their patrolling function, they can migrate into healthy tissues. The 

role of ACKR3 is unknown at steady state, but it could potentially contribute to either the 

circadian oscillations of CXCL12 within BM via its scavenging activity or to the rhythmic release 

of neutrophils. When circulating neutrophils encounter inflammatory signals, they can adhere 

and roll on endothelium and extravasate from the bloodstream to infiltrate inflamed tissue, 

where they accumulate. Inflammation leads to an upregulation of CXCL12 within the tissue as 

a cue to attract immune cells. Furthermore, during inflammation, CXCR4 and ACKR3 are 

upregulated on endothelium as shown in lung inflammatory conditions. In addition, ACKR3 is 

reported to be upregulated in inflamed tissue (for example in lung alveolar epithelium upon 

lung inflammation) but its role with regard to CXCL12 level regulation and subsequent immune 

cell recruitment is not completely understood. 
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13. Tables. 

Table 1. Genetically modified mouse models to study Ackr3 expression in vivo and 

associated phenotypes. 

Model 
Genetic 

background 
Description References 

Constitutive deletion 

Ackr3−/− C57Bl/6 

Mice carrying loxP-flanked Ackr3 exon 2 crossed with 

Deleter-Cre mice 

Phenotype: Perinatal death of >95% Ackr3-/- mice. 

Thickened semilunar valves. Normal development of B 

cells and granulocytes. Altered neuron migration during 

embryonic development. 

(Sierro et al., 2007; 

Sánchez-Alcañiz et 

al., 2011; Wang et 

al., 2011; Yu et al., 

2011; Trousse et 

al., 2015) 

Ackr3−/− 
129 Sv/Ev x 

C57Bl/6 

Knock-in of LacZ reporter in Ackr3 exon 2 (IRES-

LacZ/PGK- Neo cassette) 

Phenotype: Perinatal death of 70% Ackr3−/− mice. 

Non-viable mice: Myocardial degeneration, fibrosis, and 

cardiac hyperplasia. No defects in semilunar valves. 

Surviving mice: Cardiac hyperplasia in 25%. Normal 

lifespan, no haematopoietic or haematological defects, 

no reproductive defects. 

(Gerrits et al., 2008) 

Conditional (tissue or cell type specific) deletion 

Tie2-Cre; 

Ackr3flox/− 
C57Bl/6 

Endothelium-specific deletion. 

Phenotype: Mice survive to adulthood and are fertile. 

Cardiac hypertrophy, thickened ventricular walls, and 

thickened semilunar valves in 40% of the mice. 

(Sierro et al., 2007; 

Yu et al., 2011) 

Dlx5/6-Cre; 

Ackr3flox/flox 
C57Bl/6 

GABAergic neuron-specific deletion. 

Phenotype: Mice survive to adulthood. Altered migration 

of neurons during embryonic development (E16.5). 

(Sánchez-Alcañiz et 

al., 2011) 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on April 30, 2019 as DOI: 10.1124/mol.118.115329

 at A
SPE

T
 Journals on A

pril 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


 MOL #115329  

 33 

DlxI12b-

Cre; 

Ackr3flox/- 

C57Bl/6 CD1 

GABAergic neuron-specific deletion. 

Phenotype: Neuron positioning defects similar to those 

of constitutive Ackr3 −/− mice. 

(Wang et al., 2011) 

Emx1-Cre; 

Ackr3flox/- 
Not given 

Glutamatergic neuron-specific deletion. 

Phenotype: No effect on the position of cortical 

projection neurons. 

(Wang et al., 2011) 

Tbr2-Cre; 

Ackr3flox/flox 
Not given 

Glutamatergic neuronal progenitor-specific deletion. 

Phenotype: Altered migration of neurons in adulthood. 
(Abe et al., 2018) 

Dbx1-Cre; 

Ackr3flox/flox 
C57Bl/6 

Cajal-Retzius neuron progenitor-specific deletion. 

Phenotype: Defects in the positioning of a subpopulation 

of Dbx1-expressing neurons during embryonic 

development (E14.5). 

(Trousse et al., 

2015) 

Conditional-inducible (cell type-specific inducible) deletion 

Scl-CreERT; 

Ackr3flox 
C57Bl/6 

Tamoxifen-inducible deletion of Ackr3 from Scl-

expressing cells (HSC, myeloid lineage, endothelium 

and regions in the central nervous system) in adult mice. 

Findings: ~35% increase in CXCL12 plasma levels. No 

other apparent phenotype described. 

(Stacer et al., 2016) 

Reporter gene 

Ackr3+/EGFP C57Bl/6 
Replacement of Ackr3 exon 2 by EGFP. No phenotype 

is described. 

(Cruz-Orengo et al., 

2011) 

Ackr3-

EGFP 
CD1 

BAC insertion of the Ackr3 promoter fused to an EGFP 

coding region. Endogenous Ackr3 locus remains intact. 

No secondary effects. 

The Gene 

Expression Nervous 

System Atlas 

(GENSAT) 

(Gong et al., 2003) 
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Table 2. ACKR3 mRNA and protein detection in mammalian tissue. 

   mouse/rodent human  

System Cell type Origin mRNA Protein mRNA Protein References 

Haemato-

poietic 

system 

B cells 

Peripheral blood, 

BM, and/or 

lymphoid organs 

RNAseq FC 
Transcriptomics, 

RT-PCR 
FC, IF 

(Infantino et al., 2006; Sierro et al., 2007; Heng 

et al., 2008; Tarnowski et al., 2010; Biajoux et 

al., 2012; Wang et al., 2012; Melo et al., 2014; 

Alampour-Rajabi et al., 2015) 

T cells (CD4+, 

regulatory, 

helper, memory) 

RNAseq  
Transcriptomics, 

RT-PCR 
FC, IF 

(Balabanian et al., 2005; Infantino et al., 2006; 

Sierro et al., 2007; Heng et al., 2008; 

Tarnowski et al., 2010; Biajoux et al., 2012; 

Melo et al., 2014) 

Innate lymphoid 

cells 
RNAseq    (Heng et al., 2008) 

NK cells   
Transcriptomics, 

RT-PCR 
 (Infantino et al., 2006; Sierro et al., 2007) 

Dendritic cells RNAseq  
Transcriptomics, 

RT-PCR 
FC, IF 

(Infantino et al., 2006; Sierro et al., 2007; Heng 

et al., 2008) 

Monocytes   RT-PCR FC, IF 
(Infantino et al., 2006; Tarnowski et al., 2010; 

Chatterjee et al., 2015) 
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Neutrophils RNAseq    (Heng et al., 2008) 

Macrophages RNAseq   FC (Heng et al., 2008; Chatterjee et al., 2015) 

Basophils   RT-PCR FC (Infantino et al., 2006) 

Mesenchymal 

stem cells 
BM RT-qPCR  

Transcriptomics, 

RT-PCR 
 

(Kim et al., 2016; Liu et al., 2018; Kuçi et al., 

2019) 

Circulatory 

/ Lymphatic 

system 

ND Whole (heart) 
Lac-Z reporter, 

northern blot 
 Northern blot  

(Burns et al., 2006; Gerrits et al., 2008; 

Berahovich et al., 2014) 

Venous 

endothelium 

Digestive tract, 

heart, kidney, 

lung, liver, 

lymphoid organs 

Lac-Z reporter 

(except liver) 
  IHC (Berahovich et al., 2014) 

Vascular smooth 

muscle cells 

Heart, nervous 

system, kidney, 

digestive tract, 

skeletal muscle, 

lymphoid organs 

RT-PCR   IHC 
(Neusser et al., 2010; Rajagopal et al., 2010; 

Berahovich et al., 2014) 

Sinusoidal cells Spleen  IHC  IHC (Berahovich et al., 2014) 

Endothelial cells Kidney    IHC (Neusser et al., 2010) 
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ND 
Kidney lymphatic 

vessels 
   IF (Neusser et al., 2010) 

ND Vena cava RT-qPCR    (Klein et al., 2014) 

ND Thoracic duct RT-qPCR    (Klein et al., 2014) 

Nervous 

system 

ND Brain (whole) 

Lac-Z reporter, 

ISH, northern 

blot 

 Northern blot  

(Burns et al., 2006; Gerrits et al., 2008; Thelen 

and Thelen, 2008; Yu et al., 2011; Berahovich 

et al., 2014) 

ND Brain vasculature 
EGFP reporter, 

ISH 
   

(Schönemeier et al., 2008; Cruz-Orengo et al., 

2011) 

Astrocytes Brain  IHC  FC (intracellular) (Calatozzolo et al., 2011; Puchert et al., 2017) 

Respiratory 

system 

ND Lung (whole) 
RT-PCR, 

northern blot 
IF Northern blot  

(Burns et al., 2006; Berahovich et al., 2014; 

Cao et al., 2016; Konrad et al., 2017; Ngamsri 

et al., 2017) 

ND Lung vessels Lac-Z reporter    (Gerrits et al., 2008) 

Secretory 

system 

ND Kidney (whole) Northern blot  
RT-qPCR, 

northern blot 
IHC 

(Burns et al., 2006; Neusser et al., 2010; 

Maishi et al., 2012; Berahovich et al., 2014) 

Renal multipotent 

progrenitors 

Patient-derived 

healthy kidney 

tissue 

  RT-qPCR IF (Mazzinghi et al., 2008) 
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ND Kidney tubules Lac-Z reporter IHC  IHC (Neusser et al., 2010; Berahovich et al., 2014) 

ND Kidney glomeruli Lac-Z reporter    (Gerrits et al., 2008) 

 

ND not determined; NK Natural killer; BM bone marrow; RNAseq RNA sequencing; RT-qPCR Real time quantitative polymerase chain reaction; 

RT-PCR Reverse transcription polymerase chain reaction; ISH In situ hybridization; FC flow cytometry; IHC Immunohistochemistry; IF 

Immunofluorescence. 
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Figure 1. 
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