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Abstract 

Crosstalk between both pre- and post-synaptic components of glutamatergic 

neurotransmission plays a crucial role in orchestrating a multitude of brain functions including 

synaptic plasticity and motor planning. Metabotropic glutamate receptor 5 (mGluR5) exhibits a 

promising therapeutic potential for many neurodevelopmental and neurodegenerative disorders, 

as the consequence of its modulatory control over diverse neuronal networks required for 

memory, motor coordination, neuronal survival and differentiation. Given these crucial roles, 

mGluR5 signaling is under the tight control of glutamate release machinery mediated through 

vesicular glutamate transporters (VGLUTs) to ultimately dictate glutamatergic output. A particular 

VGLUT isoform, VGLUT3, exhibits an overlapping, but unique, distribution with mGluR5 and the 

dynamic crosstalk between mGluR5 and VGLUT3 is key for the function of specific neuronal 

networks involved in motor coordination, emotions and cognition. Thus, aberrant signaling of the 

VGLUT3/mGluR5 axis is linked to various pathologies including, but not limited to, Parkinson’s 

disease, anxiety disorders and drug addiction. We argue that a comprehensive profiling of how 

coordinated VGLUT3/mGluR5 signaling influences overall glutamatergic neurotransmission is 

warranted. 

 

Significance statement: 

Vesicular glutamate receptor 3 (VGLUT3) machinery orchestrates glutamate release and its 

distribution overlaps with metabotropic glutamate receptor 5 (mGluR5) in regional brain circuitries 

including striatum, hippocampus and raphe nucleus. Therefore, VGLUT3/mGluR5 crosstalk can 

significantly influences both physiological and pathophysiological glutamatergic 

neurotransmission. Pathological signaling of the VGLUT3/mGluR5 axis is linked to Parkinson’s 

disease, anxiety disorders and drug addiction. However, it is also predicted to contribute to other 

motor and cognitive disorders. 
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Introduction 

In late the 1930s, glutamate was discovered in the brain and was considered a metabolic 

substrate/product required for neuron’s nourishment in the central nervous system (CNS), since 

it was ubiquitously traced within various cell compartments (Krebs, 1935). It was not until early 

1980s that reports started to fully recognise glutamate as an excitatory neurotransmitter (Fonnum, 

1984; Watkins and Jane, 2009). Glutamate is crucial for many aspects of normal brain functions 

including memory, learning, motor planning. Moreover, glutamate takes part in regulating the 

activities of peripheral nervous system and endocrine cells (Danbolt, 2001; Marmiroli and 

Cavaletti, 2012). Given these crucial roles, glutamate signaling is tightly controlled and maintained 

at homeostatic levels, starting from presynaptic accumulation and subsequent release into the 

synapse, until activation of its postsynaptic neuronal targets (reviewed in Magi et al., 2019). 

Indeed, considerable progress has been made over recent years in delineating presynaptic 

release mechanisms and postsynaptic targets along glutamatergic signaling axis. Metabotropic 

glutamate receptors, mGluR5 in particular, harnessed much interest in the field of pharmacology. 

In particular, mGluR5 demonstrated diverse modulatory control of vital cellular pathways such as 

neuronal excitability, synaptic plasticity, neuronal differentiation, and survival. In addition, mGluR5 

therapeutic potential has been bolstered by the current research that provided novel insights into 

their activation states and downstream signaling (Niswender and Conn, 2010; Ribeiro et al., 

2010). Precision of the synaptic message conveyed by nerve terminals can influence activity 

modes of glutamate receptors and their subsequent signaling (Atasoy et al., 2008; Sara et al., 

2011). Particularly, VGLUTs represent very promising roles for finetuning glutamate release in 

CNS (Wojcik et al., 2004; Wilson, 2005). Additionally, modulation of expression of VGLUTs has 

been implicated in the pathophysiology of several neurodevelopmental and neurodegenerative 

disorders (Kashani et al., 2007, 2008; Oni-Orisan et al., 2008). Therefore, the interplay between 

mGluR5 and VGLUTs further complicates our understanding of pathological glutamate signaling. 
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In this review, we will highlight the current body of evidence on the dynamic crosstalk between 

VGLUT machinery and mGluR5 signaling and their potential link to pathophysiology. 

Glutamate release mechanisms 

For typical neurotransmitters, quantal release by exocytosis depends on their transport 

and packaging into synaptic vesicles. Transporters mediating such activity are located mainly on 

synaptic vesicles, but also at the plasma membrane to facilitate vesicle recycling (Fernández-

Alfonso et al., 2006; Hua et al., 2011). Glutamate packaging into synaptic vesicles is an initial key 

step, which escort glutamate to be committed to the neurotransmitter pathway away from 

metabolic pathways (Otis, 2001). This process ensures sufficient concentration of glutamate in 

synaptic vesicles prior to its exocytotic release in the synaptic cleft. Glutamate accumulation into 

synaptic vesicles is achieved by cooperative uptake process involving VGLUTs and v-type proton-

pump ATPase. Proton-pump ATPase generates an electrochemical proton gradient, which is 

efficiently utilized by VGLUTs to function properly (Fremeau et al., 2004). Additionally, synaptic 

vesicles harbor glycolytic ATP-generating enzymes, glyceraldehyde-3-phosphate 

dehydrogenase/3-phosphoglycerate kinase complex and pyruvate kinase, to provide VGLUTs 

with sufficient energy required for active transport (Ikemoto et al., 2003; Fremeau et al., 2004; 

Ishida et al., 2009). 

VGLUTs belong to the Solute Carrier 17 (SLC17) phosphate transporter family, and their 

molecular cloning identified three isoforms (VGLUT1-3) (Fremeau et al., 2004; El Mestikawy et 

al., 2011). VGLUTs have different regional, cellular, and subcellular distributions across the 

mammalian brain. Based on their distributions, VGLUTs perform distinct physiological functions, 

with no apparent changes in their uptake properties (Kaneko and Fujiyama, 2002; 

Preobraschenski et al., 2014). VGLUT1 and VGLUT2 exhibit complementary distributions across 

the adult brain. Specifically, VGLUT1 expression predominates in telencephalic regions including 

cerebral cortex, amygdala and hippocampus, whereas VGLUT2 is primarily expressed in 
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diencephalon and lower brain stem regions (Kaneko and Fujiyama, 2002; Fremeau et al., 2004). 

However, VGLUT1 and VGLUT2 colocalize in some developing and adult glutamatergic neurons 

(Fremeau et al., 2004; Herzog et al., 2006; Persson et al., 2006). Both VGLUTs can indirectly 

regulate synaptic glutamate release from nerve terminals. In some studies, synaptic quantal size 

and magnitude of both miniature and evoked excitatory postsynaptic potentials have been 

proposed to be proportional to the number of VGLUT copies at the synaptic vesicle (Wojcik et al., 

2004; Wilson, 2005; Moechars et al., 2006). However, this finding is still a matter of debate. 

Unlike the broad expression pattern of VGLUT1/2 in the CNS, VGLUT3 is expressed by a 

limited number of neuronal populations that are scattered in different brain regions (Herzog et al., 

2004; Vigneault et al., 2015) Furthermore, VGLUT3 expression is mainly observed in neurons 

that also release acetylcholine (ACh), serotonin (5HT) and even GABA (Fremeau et al., 2002; 

Gras et al., 2002; Schafer et al., 2002). In these neurons, VGLUT3 performs a complex role in 

mediating and presumably influencing the packaging of glutamate and co-released 

neurotransmitters. For instance, VGLUT3-positive cholinergic interneurons from the striatum, also 

known as tonically active interneurons (TANs), exert dual glutamatergic and cholinergic currents 

onto neighbouring striatal neurons. These currents are notably attenuated by loss of VGLUT3 

expression in neurons (Higley et al., 2011; Nelson et al., 2014). Additionally, serotoninergic and 

GABAergic neurons recruits VGLUT3-mediated signaling to regulate glutamatergic excitatory 

inputs in hippocampal neurons (Varga et al., 2009; Amilhon et al., 2010; Zimmermann et al., 

2015). Accumulated evidence now indicates that in certain neuron subsets, VGLUT1 and 

VGLUT2 regulate the co-transmission of glutamate with other classical neurotransmitters such as 

GABA, monoamine and ACh (reviewed in Trudeau and El Mestikawy, 2018). In these neurons, 

VGLUTs alter the vesicle’s capacity to accumulate other transmitters, in part via glutamate-

induced changes in pH gradient. Alternatively, co-released neurotransmitters can provide a 

regulatory feedback loop to modulate glutamate release mechanisms. This dynamic form of co-
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transmission has significant implications for motor and reward behaviors, and is impaired in 

psychiatric disorders (El Mestikawy et al., 2011; Trudeau and El Mestikawy, 2018). Taken 

together, the current evidence has solidly established VGLUT expression across various types of 

neurons and collectively mediate exocytic glutamate release machinery.  

Glutamate receptors 

Postsynaptic glutamate neurotransmission depends primarily on two classes of receptors, 

ionotropic (iGluRs) and metabotropic (mGluRs) glutamate receptors. The distinction between 

these two classes is functionally based on the observation of glutamate-evoked excitatory 

currents (Curtis et al., 1959) and/or secondary inositol phosphate formation (Sladeczek et al., 

1985). iGluRs are ligand-gated ion channels that induce fast excitatory ionic currents, whereas 

mGluRs are G protein-coupled receptors (GPCR) that provide a relatively delayed regulation of 

cellular processes through G protein-dependent and -independent signaling cascades 

(Traynelis et al., 2010; Ribeiro et al., 2011). Three receptors subtypes fall under iGluR category: 

N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 

and kainate (KA) receptors. iGluRs structurally exist as tetramers in the CNS; consisting of four 

interlinked subunits forming a non-selective cation pore (Traynelis et al., 2010). Their 

expression pattern is widespread with minor variation across different brain regions, and 

typically individual neurons express multiple iGluRs (Hadzic et al., 2017). AMPA and KA 

receptors share similar fast biophysical properties. Both receptors open within 1 ms to evoke 

fast excitatory currents and provide initial depolarization that typically facilitates NMDA receptor 

channel activation. However, activation of NMDA is relatively delayed and prompts depolarizing 

calcium flux that ultimately activates targeted intracellular kinases and phosphatases, thus 

mediating neuronal transmission (Traynelis et al., 2010). 

On the other hand, mGluRs are class C GPCRs that promote G protein coupling leading 

to subsequent changes in intracellular secondary messenger levels, regulation of ion channels, 
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or stimulation of G protein-independent pathways (Pin et al., 2003; Gerber et al., 2007; Ribeiro 

et al., 2011). mGluRs are categorized into three groups based on sequence homology, G protein 

coupling, and ligand selectivity (Pin et al., 2003; Katritch et al., 2013). Group I mGluR consists 

of mGluR1 and mGluR5. They preferentially couple to Gq/11 proteins that  mediate their 

downstream effects through activation of phospholipase C (PLC) and protein kinase C pathway 

(Abdul-Ghani et al., 1996; Dhami and Ferguson, 2006). Group II includes mGluR2 and mGluR3, 

and group III includes mGluR4/6-8. With the exception of mGluR3 that can also inhibit guanylate 

cyclase enzyme (Wroblewska et al., 2006), all group II and III mGluRs are coupled to inhibitory 

Gi/o proteins which supress intracellular cyclic adenosine monophosphate (cAMP) formation via 

inhibition of the adenylyl cyclase (Schoepp, 2001).  mGluRs are composed of single-peptide 

that form seven transmembrane domain spanning receptors, like other GPCRs, with an 

extracellular N-terminus and intracellular C-terminus (Pin et al., 2003). However, mGluRs exist 

as constitutive dimers and each receptor possesses a large extracellular ligand-binding Venus 

Flytrap (VFT) domain, linked to the 7-transmembrane domains via cysteine-rich domains 

(CRD). Agonist-induced conformational changes in both VFT and CRD are responsible for 

mGluR activation and downstream signaling (Pin et al., 2003; Niswender and Conn, 2010). 

Recently, Koehl et al., (2019) have reported the first full-length crystal structure for mGluR5 

homodimers and by doing so have also provided the structural framework for the mGluR5 

homodimer activation mechanisms. Specifically, they report that agonist binding to the dimer 

VFT domains enhances the interaction between CRDs and second extracellular loop of the 

receptor leading to rearrangement of the 7-transmembrane domains and initiation of receptor 

signaling (Koehl et al., 2019). 

mGluR signaling profiles 

mGluRs are primarily located in perisynaptic zones of neuronal fibers. mGluR group I is 

mostly located in postsynaptic elements, in the vicinity of iGluRs, where they actively modulate 
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neuronal excitability (Shigemoto et al., 1993; Luján et al., 1996). On the other hand, both group 

II and III mGluRs are typically located presynaptically and functions as autoreceptors regulating 

glutamate release. However, some of group II mGluRs, mGluR2 in particular, are expressed in 

postsynaptic elements of neurons (Neki et al., 1996; Ohishi et al., 1998; Schoepp, 2001). This 

preferential distribution for mGluRs serves two purposes: (i) acting as glutamate spillover 

homeostat for synaptic firing and (ii) providing real-time regulation for postsynaptic responses and 

plasticity changes in multisynaptic connections (Rusakov, 2002; Sjöström et al., 2008). 

Group I mGluR canonical signaling depends primarily on the affinity exhibited toward 

certain subclass of G proteins. Group I mGluRs preferentially couples to Gαq/11 proteins that 

stimulates PLCβ1 activation and subsequent formation of diacylglycerol (DAG) and inositol 1,4,5 

triphosphate (IP3). The latter ultimately binds to IP3 receptors on endoplasmic reticulum releasing 

calcium into cytosol. DAG remains attached to plasma membrane and, together with released 

calcium, leads to protein kinase C (PKC) activation. PKC can trigger activation of phospholipase 

D, phospholipase A2 and mitogen activated protein kinases (MAPKs), as well as modulation of a 

variety of ion channels (Abdul-Ghani et al., 1996; Hermans and Challiss, 2001; Dhami and 

Ferguson, 2006). Furthermore, Group I mGluR-mediated PKC activation, together with calcium 

and other tyrosine kinases, regulates NMDA receptor activation by increasing open state 

probability of the channel (Chiamulera et al., 2001; Heidinger et al., 2002). In addition to Gq/11 

protein coupling, mGluR1/5 couples to alternative G proteins (Gi/o and/or Gs) (Aramori and 

Nakanishi, 1992; Joly et al., 1995; Francesconi and Duvoisin, 1998; Hermans et al., 2000), yet, 

this is largely influenced by the cellular context and level of expression of mGluRs (Abe et al., 

1992; Balázs et al., 2002). Group I mGluR interacts with NMDARs via intracellular protein 

scaffolds such as homer, SHANK and post-synaptic density protein 95 to activate calcium-

dependent signaling pathways involved in neuron activity (Tu et al., 1998, 1999; Husi et al., 2000). 

Group I mGluR activity also regulates intracellular signaling involved in neuron survival and 
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neuroprotection. mGluR1/5 has been shown to promote Akt/mTOR activation via 

phosphoinositide 3-kinase (PI3K)-, phosphoinositide-dependent kinase (PDK1)- and a PI3K 

enhancer (PIKE)-dependent mechanisms (Rong et al., 2003; Hou and Klann, 2004). Furthermore, 

group I mGluR stimulation also leads to extracellular signal-regulated kinase (ERK) activation in 

neurons through IP3-stimulated Ca2+ release and Homer scaffold (Mao, 2005; Nicodemo et al., 

2010). This mGluR5- mediated ERK activation is not only vital for cellular growth and survival 

(Balazs, 2006; Nicodemo et al., 2010), but also regulates the activity of parallel inhibitory signaling 

such as glycinergic neurotransmission (Zhang et al., 2019). Recently, mGluR5 activity has been 

linked to autophagy regulation and clearance of pathologic protein aggregates. Suppression of 

mGluR5 signaling normalized autophagic clearance mechanisms for misfolded aggregates such 

as mutant huntingtin and beta-amyloid aggregates (Abd-Elrahman et al., 2017, 2018) in mouse 

models of Huntington’s disease and Alzheimer’s disease, respectively. Furthermore, mGluR5 is 

rich in glial cells, including microglia and astrocytes (Biber et al., 2001; Byrnes et al., 2009). 

Activation of mGluR5 in astrocytes can promote apoptosis through a mechanism involving inositol 

phosphate formation, increased Ca2+oscillation, and facilitation of VGLUT-mediated 

glutamate release (Pasti et al., 1997; Biber et al., 2001; Bezzi et al., 2004). Alternatively, other 

reports showed that mGluR5 activation in cultured cortical and hippocampal astrocytes supress 

microglial associated inflammation through stimulation of mitogen-activated protein kinase and 

PLD signaling (Servitja et al., 2001; Peavy and Conn, 2002; Byrnes et al., 2009). 

Bidirectional regulation: VGLUTs and mGluRs within CNS 

The dynamic crosstalk between glutamatergic pre- and postsynaptic components is 

essential for regional brain circuitries regulation that ultimately controls the respective behavioral 

functions. Most studies focused on understanding the regulatory effects of VGLUT-dependent 

glutamate release on iGluRs activity across the synapse (Wojcik et al., 2004; Wilson, 2005; Higley 

et al., 2011). However, recent evidence have started to recognize the parallel crosstalk between 
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VGLUTs and perisynaptic mGluR activity (Sakae et al., 2015; Fasano et al., 2017). The adjacent 

expression of VGLUT and mGluR on the same nerve terminal or across the glutamatergic 

synapse creates an excitatory relay stations in various brain networks. As outlined in table 1, 

VGLUT1-containing vesicles are abundantly coexpressed with: mGluR1-5/7/8 in the cerebral 

cortex, mGluR4/5/7 in the hippocampus, and with mGluR1/3/4/7 in the cerebellar cortex (Martin 

et al., 1992; Shigemoto et al., 1992; Romano et al., 1995; Kinoshita et al., 1996; Saugstad et al., 

1997; Corti et al., 2002). Moreover, VGLUT1-positive neurons colocalize with mGluR3/7 in the 

amygdala (Hitoshi Ohishi et al., 1993; Petralia et al., 1996), and with mGluR6 in the retina 

(Nakajima et al., 1993; Sherry et al., 2003). VGLUT2 is highly expressed within brain deep 

structures with mGluR1/4/7 in the thalamus (Martin et al., 1992; Shigemoto et al., 1992; Testa et 

al., 1994), mGluR2/3/5/7 in the hypothalamus (H. Ohishi et al., 1993; Romano et al., 1995), 

mGluR1-3/7/8 in the brainstem (Corti et al., 1998; Hay et al., 1999), mGluR4/5/7 in the spinal 

medulla (Jia et al., 1999; Azkue et al., 2001) and mGluR4/7 in deep cerebellar nuclei (Corti et al., 

1998, 2002; Fremeau et al., 2001; Herzog et al., 2001). Within the striatum, VGLUT3-positive 

TANs form a network of synaptic connections with mGluR group I (mGluR5) and group II/III 

(mGluR3/4/7) expressed on various striatal neurons. In addition, striatal neurons receive two 

major glutamatergic afferents: VGLUT1-positive cortico-striatal, and VGLUT2-positive thalamo-

striatal projectomes (Testa et al., 1994; Romano et al., 1995; Ribeiro et al., 2009; El Mestikawy 

et al., 2011).  

Given the extensive arborization of VGLUT1/2-positive nerve terminals across the 

mammalian brain, it has been challenging to exclusively examine VGLUT-mGluR signaling 

crosstalk with minimal input from other neurotransmitter systems. However, using neuronal 

cultures and ex vivo brain slice experiments, investigators have attempted to dissect reciprocal 

VGLUT-mGluR regulation. Bezzi et al. (2004) have shown that group I mGluRs modulate 

glutamate release in neuronal culture. Application of (S)-3,5-Dihydroxyphenylglycine (DHPG), an 

mGluR group I agonist, on hippocampal cultures recruits VGLUT1/2 synaptic vesicles followed 
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by augmentation of glutamate release onto adjacent neurons (Bezzi et al., 2004). mGluR5 

activation in VGLUT1-positive synapses also regulate astroglial maturation and growth in 

developing mouse astrocytes (Morel et al., 2014). Furthermore, VGLUT1 release machinery 

cooperates with group I mGluRs in regulating synaptic plasticity in neurons. Generation of 

mGluR1/5-mediated long-term depression (LTD) in cultured hippocampal neurons paradoxically 

increased presynaptic VGLUT1 fusion events and, subsequently, glutamate release (Xu et al., 

2013). Likewise, VGLUT1-positive cerebellar fibers evoke mGluR-dependent plasticity changes 

in Purkinje neurons, that are blocked by nonselective group I/II mGluR antagonist, α-methyl-4-

carboxy-phenylglycine (MCPG; Brasnjo and Otis, 2001; Nunzi et al., 2003). In addition, VGLUT1/2 

release machinery functionally interacts with Group I mGluRs in sensory relay structures within 

the spinal cord. VGLUT1/2-positive neurons regulate intrinsic firing properties and hence sensory 

communication mechanisms, via shifting postsynaptic mGluR-GABA balance towards mGluR1/5 

activation in dorsal horn neurons of Wistar rats (Derjean et al., 2003). Taken together, these 

reports broadly highlighted an important crosstalk between VGLUT and mGluR signaling axis in 

regulating the strength of glutamatergic neurotransmission across the CNS. 

VGLUT3-mGluR5 neurotransmission axis 

Recently, there has been a growing interest in unraveling the complex role of VGLUT3 

signaling in different brain regions owing to its peculiar cellular and anatomical features. Relative 

to other VGLUTs, VGLUT3 has the particularity to be present in both neuronal soma and dendritic 

processes of specific neuronal populations of raphe nuclei, hippocampus, striatum, cortex, inner 

hair cells and transiently in cerebellum (Gras et al., 2002, 2005; Ruel et al., 2008; Seal et al., 

2008; Amilhon et al., 2010). This discrete expression depicts an interesting, unique role for 

VGLUT3-mediated signaling in fine tuning co-released neurotransmitters, such as 5HT, ACh or 

GABA, in addition to the well-characterized glutamate release (Fremeau et al., 2002; Gras et al., 

2002; Somogyi et al., 2004; Trudeau and El Mestikawy, 2018).  VGLUT3-postive interneurons 

regulate glutamate release and provide tonic excitatory inputs onto both iGluRs and mGluRs, thus 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 13, 2020 as DOI: 10.1124/molpharm.120.000089

 at A
SPE

T
 Journals on A

pril 9, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


12 
 

regulating both ionotropic and metabotropic neurotransmission, respectively (Higley et al., 2011; 

Nelson et al., 2014; Sakae et al., 2015). Despite the relative low abundance of VGLUT3, its 

crosstalk with various mGluRs appear to regulate specialized brain functions involved in 

locomotor activity and reward processing (Amilhon et al., 2010; Sakae et al., 2015; Ribeiro et al., 

2017; Reiner and Levitz, 2018). Notably, mGluR5 is abundantly co-expressed with VGLUT3 in a 

number of regional varicosities inside striatum, hippocampus and raphe nucleus (El Mestikawy et 

al., 2011; Vigneault et al., 2015; Ribeiro et al., 2017). In addition, mGluR5 has been shown to 

regulate motor and cognitive domains of behavior in health and disease (Kinney et al., 2003; Jew 

et al., 2013; Hamilton et al., 2016; Abd-Elrahman et al., 2017; Farmer et al., 2020). This strongly 

suggests a functional interaction between mGluR5 and VGLUT3 in regulation of specialized brain 

functions and behavior. Here, we shall discuss the current evidence on VGLUT3-mGluR5 

signaling axis and review its behavioral implications in physiological and pathophysiological 

contexts. 

VGLUT3-mGluR5 axis in striatal networks 

The crosstalk between VGLUT3 and mGluR signaling is evident in striatal circuitry (Figure 

1). VGLUT3 mediates the release of glutamate from two neuronal varicosities; striatal TANs and, 

to lesser extent, serotonergic raphe neurons (El Mestikawy et al., 2011; Belmer et al., 2019). 

These varicosities regulates “en passant” mGluR5-rich striatal medium spiny neurons (MSN) 

(Shigemoto et al., 1993; Romano et al., 1995; Contant et al., 1996). TANs, despite their relative 

low abundance, exhibit VGLUT3-dependent mono- and di-synaptic control over different striatal 

neurons (Nelson et al., 2014; Kljakic et al., 2017; Rehani et al., 2019). For instance, genetic 

silencing of VGLUT3 signaling in TANs diminishes postsynaptic responses on both MSNs and 

fast-spiking GABAergic interneurons (Higley et al., 2011; Nelson et al., 2014). Interestingly, 

mGluRs modulate TAN glutamatergic output, in which mGluR5 and mGluR2 either facilitate or 

suppress VGLUT3-mediated glutamate release into the striatum, respectively (Bonsi et al., 2007). 

In addition, VGLUT3-mediated neurotransmission provides proxy regulation onto dopaminergic 
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signaling in nucleus accumbens (NAc). Sakae et al. (2015) showed that genetic ablation of 

VGLUT3 disinhibited dopaminergic signaling in NAc in mice. This observation was mirrored by 

treatment of control, not VGLUT3-/- mice, with high dose of LY341495 (non-selective mGluR 

antagonist), suggesting that VGLUT3 signaling in NAc suppress dopamine efflux via mGluR-

dependent mechanisms (Sakae et al., 2015). Moreover, in a recent study by Li et al. (2018), 

mGluR5 activity has been shown to regulate vesicular glutamate release in NAc via tans-synaptic 

endocannabinoid negative feedback loop. Overall, these reports indicate that VGLUT3-mGluR5 

signaling axis is vital in maintaining dynamic balance of excitatory/ inhibitory inputs within striatal 

networks. Nevertheless, more studies are needed to clarify how VGLUT3 signaling can directly 

modify mGluR5 activity in striatal output neurons, such as MSN. 

This crosstalk between mGluR5 and VGLUT3 can affect striatal locomotor and reward-

processing functions. Indeed, mGluR5 is involved in various brain functions, including locomotor 

behavior and function (Kinney et al., 2003; Guimaraes et al., 2015). Genetic mGluR5 deletion 

increases locomotor activity in mice (Gray et al., 2009; Ribeiro et al., 2014). Furthermore, 

pharmacological inactivation of mGluR5 with either 3-[(2-methyl-4-thiazolyl) ethynyl] pyridine 

(MTEP) or 2-chloro-4-[(2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl] 

pyridine (CTEP) alters locomotor activity and motor coordination in rodents (Ribeiro et al., 2014; 

Abd-Elrahman et al., 2017). More specifically, antagonizing mGluR5 activity within the striatum 

improve locomotor behavior in mice (Guimaraes et al., 2015). Yet, it remains unclear whether 

such effects are dependent on VGLUT3 signaling. Interestingly, global loss of VGLUT3 signaling 

in the brain leads to hyperlocomotive phenotype in mice (Gras et al., 2008). However, site-specific 

knock out of VGLUT3 in striatal TANs is not sufficient to reproduce the global knockout effects, 

suggesting that extra-striatal VGLUT3 pools are involved in such behavioral changes (Divito et 

al., 2015). Moreover, striatal neurons mediate reward-processing and reinforcement behavior 

through mGluR5. Genetic deletion of mGluR5 elicits depressive-like behaviors manifested in 

learned helplessness, social withdrawal and anhedonia in rodents. Such behavioral alterations 
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were reversed by mGluR5 lentiviral rescue into the NAc (Shin et al., 2015). Interestingly, similar 

anxiety-like behaviors were noted in mice lacking VGLUT3 signaling. Deletion of VGLUT3 

enhanced innate fear in newborn mice, while adult VGLUT3-/- mice elicited marked neophobia 

toward anxiogenic contexts (Amilhon et al., 2010; Balázsfi et al., 2016). 

  Likewise, mGluR5 activity is linked to cocaine reward mechanisms and addiction (Kenny 

et al., 2005; Knackstedt and Kalivas, 2009). Recent preclinical evidence indicates that genetic 

deletion or pharmacological blockade of mGluR5 diminishes cocaine and sucrose self-

administration, as well as cocaine-induced reinstatement of drug-seeking behavior (Lee et al., 

2005; Platt et al., 2008; Keck et al., 2014; Li et al., 2018). Moreover, the functional interaction 

between mGluR5 and glutamate release mechanisms is critical for drug-seeking behavior and a 

rebound increase in NAc extracellular glutamate concentrations is observed following inhibition 

of mGluR5 activity (Li et al., 2018). These observations are accompanied by the suppression of 

dopaminergic neurotransmission and drug-seeking behavior in animals. Interestingly, such 

alterations in dopamine/glutamate balance appear to be triggered by VGLUT3 signaling in NAc. 

Disruption of VGLUT3 signaling in mice markedly augments dopamine release in the NAc due to 

lack of signaling by mGluR, an effect coupled with increased cocaine self-administration in mice 

(Sakae et al., 2015). Taken together, these reports suggest that VGLUT3-mGluR5 signaling axis 

control striatal functions at different levels. Yet, the precise role VGLUT3 signaling in mGluR5-

mediated behavioral alterations remains largely unknown. 

VGLUT3-mGluR5 axis in hippocampal networks 

Glutamatergic neurotransmission constitute the majority of hippocampal circuits; 

regulating neuronal excitability, network synchronization and integrating synaptic plasticity inputs 

from both pyramidal neurons and interneurons (reviewed in Basu and Siegelbaum, 2015). Within 

the hippocampus, mGluR1/5 are enriched in pyramidal neurons of CA1 region (Romano et al., 

1995; Shigemoto et al., 1997; Purgert et al., 2014). Stimulation of mGluR1/5 via DHPG induces 
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mGluR-dependent LTD in hippocampal CA1 slice preparations as well as in vivo awake, behaving 

animals (Manahan-Vaughan, 1997; Lüscher and Huber, 2010). The mechanism requires Gαq 

signaling, however, it can also occurs independent of postsynaptic intracellular Ca2+ release, PLC 

or PKC activity (Fitzjohn et al., 2001; Ireland and Abraham, 2002; Lüscher and Huber, 2010). 

While VGLUT3 is not expressed in pyramidal neurons, VGLUT3-positive vesicles are evidently 

observed in regular-spiking GABAergic interneurons (cholecystokinin (CKK)+ basket cells) 

(Somogyi et al., 2004). In addition to a few subsets of VGLUT3-positive serotoninergic fibers are 

present in the hippocampus (Figure 2; Somogyi et al., 2004; Amilhon et al., 2010). VGLUT3-

positive basket cells selectively form invaginating synapses with mGluR5 on pyramidal cells. At 

these synapses, it is hypothesized that basket cell terminals corelease GABA, glutamate, and 

CCK, of which glutamate modulate neuronal and synaptic functions through activation of mGluR5 

(Omiya et al., 2015; Pelkey et al., 2020). In a study investigating the impact of VGLUT3 signaling 

on GABAergic neurotransmission, Fasano et al. (2017) showed that glutamate released via 

VGLUT3 finetune and dampen GABAergic currents onto CA1 pyramidal neurons through 

presynaptic mGluR group III autoreceptors, with little or no effect from mGluR5 signaling (Fasano 

et al., 2017). However, direct evidence linking excitatory components of VGLUT3-positive 

interneurons and hippocampal mGluR5 signaling is still lacking. Interestingly, VGLUTs and 

mGluR1/5 expression levels are dynamically corelated in hippocampal circuits. Glutamatergic 

system shifts towards increased VGLUT1/2 protein expression in the hippocampus of aged rats, 

an effect that is coupled with a decrease in mGluR1/5 expression levels at postsynaptic densities 

(Ménard et al., 2015). This mode of altered glutamatergic signaling has been shown to modify 

synaptic plasticity at CA1 synapses (Lüscher and Huber, 2010; Fasano et al., 2017).  

Activation of mGluR5 is involved in different domains of memory-processing and learning 

behavior. Chronic disruption of mGluR5 signaling via pharmacological maneuvers impairs both 

spatial working and long-term memory (Rodrigues et al., 2002; Homayoun et al., 2004; Hamilton 
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et al., 2016). Conversely, application of mGluR5 positive allosteric modulators (PAMs) improves 

spatial alternation (Balschun et al., 2006) and spatial learning in the water maze (Ayala et al., 

2009; Doria et al., 2018). mGluR5 knockout mice have elicited deficits in certain hippocampal-

dependent contexts, such as; discrimination learning (Zeleznikow-Johnston et al., 2018), long-

term spatial and contextual memory as assessed by Morris water maze and contextual fear 

conditioning paradigms (Xu et al., 2009; Hamilton et al., 2014; Burrows et al., 2015). On the other 

hand, evidence supporting VGLUT3 involvement in hippocampal-dependent behaviors is still not 

clear. In a recent report, VGLUT3 knockout mice showed normal learning behavior and intact 

social and spatial memory. Nevertheless, mild impairments in working memory and cognitive 

flexibility have been noted, suggesting a deficit in cortico-hippocampal interaction (Fazekas et al., 

2019). Overall, the current evidence describes an evident role for both VGLUT3 and mGluR5 

signaling in hippocampal networks, yet the impact on memory-processing and learning 

phenotypes remain dependant, for the most part, on mGluR5 activity. 

VGLUT3-mGluR5 in raphe networks 

Raphe nuclei are heterogeneous populations of neurons with poorly defined 

cytoarchitecture and serotonergic neurons constitute their major component. Their projectomes 

run along the rostrocaudal extension of the brainstem in both animals (Meessen and Olszewski, 

1950; Taber et al., 1960) and humans (Olszewski and Baxter, 1954). Over the recent years, 

evidence has accumulated on the role glutamate as a second neurotransmitter/neuromodulator 

in serotoninergic neurons. This VGLUT3-mediated neurotransmission exist in large neuronal 

populations comprising both dorsal and medial raphe nuclei (Fremeau et al., 2002; Amilhon et al., 

2010; Hioki et al., 2010; Wang et al., 2019), which project to different regions across the forebrain 

including; striatum, hippocampus and lateral septum (Dahlström and Fuxe, 1964; Qi et al., 2014; 

Belmer et al., 2019). Loss of VGLUT3 signaling attenuates 5-HT1A autoreceptor-mediated 

neurotransmission in raphe nuclei, in addition to suppression of 5-HT transmission in projection 
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areas including hippocampus and cerebral cortex (Amilhon et al., 2010). Furthermore, VGLUT3-

positive serotonergic neurons form a pathway to the NAc via the ventral tegmental area (VTA) 

neurons, regulating reward circuitry (Qi et al., 2014; Wang et al., 2019). Glutamate released via 

VGLUT3-positive raphe neurons, together with serotoninergic signaling, modulates VTA activity. 

This excitatory VGLUT3 inputs in turn evokes and augments VTA dopaminergic 

neurotransmission into the NAc (Wang et al., 2019; Cunha et al., 2020). Similarly, mounting 

evidence documented the neuromodulatory role of glutamate on mGluR and iGluR activity 

dynamics in reward circuitry (Varga et al., 2009; D’Souza, 2015; Malvaez et al., 2015). Both 

mGluR1 and mGluR5 are expressed in VTA dopaminergic neurons (Hubert et al., 2001). 

mGluR1/5 activation via DHPG induces initial suppression of inhibitory postsynaptic currents 

followed by LTD in dopamine releasing neurons of VTA (Yu et al., 2013). This LTD in VTA neurons 

requires the activation of both ERK1/2 and mTOR signaling pathways (Yu et al., 2013). Likewise, 

presynaptic mGluRs regulate the activity of VTA dopaminergic neurons. Blocking mGluR II/III 

autoreceptors enhances the firing rate of dorsal raphe serotonergic neurons and, subsequently, 

facilitates glutamate release onto VTA neurons (Bonci et al., 1997; Riegel, 2004). Nevertheless, 

the current evidence is inconclusive with regard to mGluR5 involvement in the tonic regulation of 

glutamate/5HT corelease from VGLUT3-positive neurons. Bradbury et al. (2003) showed that 

blocking mGluR5 with 2-methyl-6-(phenylethynyl)pyridine (MPEP) produces similar 

neuroendocrine responses to typical 5HT-based antidepressants, including an increase in 

corticosterone plasma levels, which were partially blocked with the 5-HT1A antagonists (Bradbury 

et al., 2003). On the other hand, Lee and Croucher (2003) reported that blocking mGluR5 did not 

modify 5HT levels in the frontal cortex of conscious, freely moving rats, suggesting that mGluR5 

signaling is minimally involved in serotoninergic neurotransmission. Overall, these reports 

provided important insights into the involvement of VGLUT3-mGluR5 signaling axis in regulating 

dopamine release via raphe nuclei/VTA pathway. 
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Pathological involvement of VGLUT3-mGluR5 axis in neurological disorders 

The current evidence shows that dysregulated VGLUT/mGluR neurotransmission 

contribute to pathogenesis of various neurological diseases (Volk et al., 2015; Ribeiro et al., 

2017). Recent preclinical studies have depicted a promising role for either mGluR5 or VGLUT3 in 

alleviating behavioral impairments accompanying drug addiction (Sakae et al., 2015; Li et al., 

2018), anxiety (Amilhon et al., 2010; Ramos-Prats et al., 2019) or motor disorders such as 

Parkinson’s disease (Divito et al., 2015; Ribeiro et al., 2017; Farmer et al., 2020). In the next few 

sections, we will discuss the role of aberrant VGLUT-mGluR5 signaling in the pathophysiology of 

Parkinson’s disease, anxiety disorders and drug addiction. 

Parkinson’s disease and related disorders 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the 

world. Primary pathological changes in PD involves loss of dopaminergic neurons in the 

substantia nigra pars compacta (SNc), projecting to both branches of striatal output, direct and 

indirect pathways of the basal ganglia (Poewe et al., 2017). The decreased dopamine levels 

govern the classic symptoms of PD which include; tremors, rigidity, postural instability and 

hypokinesia (Dickson, 2012).These symptoms coincide with hyperactive glutamatergic neurons 

in the subthalamic nucleus (STN) which are suggested to contribute to the motor manifestations 

of PD (DeLong and Wichmann, 2015). 

mGluR1 and mGluR5 are localized at the postsynaptic terminals of the basal ganglia, the 

main region involved in motor planning and coordination (Bonsi et al., 2007). Abundant preclinical 

reports implicate aberrant mGluR5 signaling in motor disorders, including PD and Levodopa-

induced dyskinesia (LID). Inhibition of mGluR5 activity notably improves motor deficits in different 

PD animal models (Coccurello et al., 2004; Phillips et al., 2006; Ossowska et al., 2007). 

Furthermore, mGluR5 expression levels can be linked to PD pathogenesis. Price et al. (2010) 

have shown that mGluR5 immunoreactivity is increased in the frontal cortex, hippocampus, and 
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putamen of patients with lewy bodies dementia and in the putamen of PD patients. A similar 

mGluR5 pattern coincides with significant motor deficits in α-synuclein murine models of PD. 

Blocking mGluR5 with MPEP ameliorated impaired mGluR5 expression and the associated 

behavioral deficits in these animals (Price et al., 2010). In addition to MPEP, other mGluR5 

negative allosteric modulators (NAMs) such as; mavoglurant, fenobam and dipraglurant exhibit a 

robust behavioral and biochemical improvements against PD in preclinical studies (reviewed in 

Litim et al., 2017). Bezard et al showed that dipraglurant suppressed motor dyskinesias in 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primates (Bezard et al., 2014). 

Genetic and pharmacological inactivation of mGluR5 are effective in reducing dopamine depletion 

and exerting neuroprotection in 6-hydroxydopamine (6-OHDA) lesion animal models of PD 

(Armentero et al., 2006; Black et al., 2010). These favorable outcomes for mGluR5 antagonism 

appear to be related to; (i) normalizing excitotoxic striatal responses, (ii) improving striatal 

regulation of D1 receptor-dependent signaling, (iii) activation  of neuroprotective pathways such 

as mTOR and ERK1/2, the hallmarks of molecular responses associated with dyskinesia 

(Fieblinger et al., 2014; Farmer et al., 2020). In a recent study, Farmer et al showed that mGluR5-

negative allosteric modulator CTEP promotes the recovery of striatal dopaminergic fibers in 

lesioned mice. The beneficial effects are mediated through activation of mTOR pathway and 

elevation of brain-derived neurotrophic factor levels, since coadministration of mTOR inhibitor, 

rapamycin, abolished CTEP-induced neurorecovery (Farmer et al., 2020). 

While there is no direct evidence on VGLUT3-mGluR5 crosstalk in PD. A number of recent 

reports documented the protective role of VGLUT3-mediated transmission in dyskinetic animal 

models. VGLUT3 loss in mice also leads to an evident circadian -dependent increase in dopamine 

synthesis and release within the striatum (Divito et al., 2015). Similar elevations in dopamine 

release are observed upon broad-spectrum antagonism of striatal mGluR in wild type, but not 

VGLUT3-/- mice, suggesting that VGLUT3-dependent signaling inhibits dopamine efflux via 
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mGluR activation in the striatum (Sakae et al., 2015). Mice also exhibit typical locomotor deficits 

following dopamine depletion with 6-OHDA that were significantly improved by disrupting 

VGLUT3 signaling (Divito et al., 2015). Furthermore, loss of VGLUT3 attenuated L-DOPA induced 

dyskinetic and dystonic responses, suggesting that VGLUT3 signaling is involved in the 

development of LID. Interestingly, these behavioral improvements are accompanied by mitigation 

in compromised cellular responses such as impaired ERK1/2 signaling, a signaling cascades 

activated by mGluR5 (Gangarossa et al., 2016). Overall, regulation of dopamine deficits in PD 

appear to be dependent on either VGLUT3 or mGluR5 signaling in striatum. Indeed, further 

investigations are warranted to depict how VGLUT3-mGluR5 signaling axis can synergistically 

modify PD pathogenesis. 

Anxiety disorders 

Anxiety disorders are disabling neuropsychiatric illnesses that pose a significant clinical, 

economic and social burden. Typically, anxiety entail disorders that have common features of 

excessive fear and apprehension and related behavioral disturbances. These include social 

anxiety, generalized anxiety and panic disorders (Craske and Stein, 2016). Modulating 

glutamatergic signaling, mGluR5 specifically, have shown promising preclinical results for the 

development of novel anxiolytic drugs. Genetic deletion of mGluR5 in mice reduced stress-

induced hyperthermia, which was considered as a measure of anxiety (Brodkin et al., 2002). 

Similar anxiolytic-like observations were noted in preclinical models of anxiety disorders upon 

dosing with mGluR5 antagonists and mGluR5 NAMs (Hovelso et al., 2012). In fact, fenobam, a 

clinically validated anxiolytic drug, is found to be a potent and selective mGluR5 NAM (Porter et 

al., 2005). However, the mechanism underlying mGluR5 anxiolytic properties remain to be 

established. In a study done in patients with obsessive-compulsive disorders (OCD), a positive 

correlation was reported between mGluR5 availability in cortico-amygdala circuits and anxiety-

related symptoms, suggesting that an elevated mGluR5 expression or signaling constitutes a 
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neuropathological hallmark of these disorders (Akkus et al., 2014). Similarly, Holmes et al. (2017) 

show a higher density of mGluR5 in patients compared to healthy controls, with the highest 

difference observed in the prefrontal cortex. Therefore, blocking hyperactive mGluR5 activity in 

cortex and amygdala can be effectively targeted to relieve anxiety disorders including post-

traumatic stress disorder or OCD.  

VGLUT3 neurotransmission plays an evident role in anxiety brain networks. However, 

neuronal circuitries regulating the anxious behaviors appear to be differentially triggered by either 

mGluR5 or VGLUT3 signaling, in part, due to the complex nature of such circuitries. Amilhon et 

al. (2010) have reported that global loss of VGLUT3 signaling results in a specific anxiety-related 

phenotype. Using different conflict-based assessment paradigms, VGLUT3−/− mice exhibit 

marked neophobia toward anxiogenic contexts, suggesting a role for VGLUT3 signaling in anxiety 

disorders vulnerability (Amilhon et al., 2010). Particularly, VGLUT3-positive serotoninergic 

projections are suggested to play a role in this phenotype. Under physiological conditions, 

raphe/amygdala neuronal pathway regulate stress response mechanisms via hypothalamic-

pituitary-adrenal (HPA) axis (Pompili et al., 2010). Loss of VGLUT3 signaling elevates HPA axis 

activity in mice and contributes to the development of anxious phenotype (Horváth et al., 2018). 

Likewise, this anxious phenotype is strongly influenced by rodent genetic makeup. A recent study 

assessed whether different Vglut3 expression levels in various mouse strains can influence 

VGLUT3-dependent phenotypic traits. VGLUT3/phenotype correlation analysis suggests a role of 

VGLUT3-postive raphe neurons in manifesting anxiety traits in mice, further confirming the role 

of VGLUT3 in modulation of anxiety behavior (Sakae et al., 2019).  However, the interaction 

between VGLUT3 and mGluR5 signaling and their influence on co-released neurotransmitters 

such as 5HT, ACh in shaping stress responses remain unclear. 

Drug addiction 
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Drug addiction is a chronic, compulsive neuropsychiatric disorder characterized by 

uncontrollable drug use and addiction (Nestler, 2001).  Alterations in dopaminergic midbrain 

neurons plasticity is generally considered the hallmark of drug seeking behavior. This leads to 

long lasting changes in neighbouring brain circuitries and ultimately contributes to relapse after 

withdrawal (Kauer and Malenka, 2007). At the molecular level, four brain regions are mainly 

involved in this disorder: prefrontal cortex (PFC), NAc, VTA, and hippocampus. Although, 

dopaminergic signaling is a vital determinant for acute reward processes, recent evidence 

indicates a regulatory role of glutamatergic transmission in drug seeking behavior, as it is primarily 

involved in mesocorticolimbic reward circuitry. In particular, PFC glutamatergic neurons project 

directly to NAc, and together with VTA neurons, collectively contribute to drug seeking behavior 

and addiction (Kalivas and Volkow, 2005; Gorelova et al., 2012). 

 Chiamulera et al. (2001) published the first seminal report associating mGluR5 and drug 

addiction. The authors reported that mice lacking mGluR5 failed to acquire cocaine self-

administration despite the high levels of dopamine released in NAc following acute injection. 

Follow-up studies demonstrated that mGluR5 suppression reduced cocaine and nicotine self-

administration (Kalivas, 2008; Li et al., 2018). Systemic and intra-accumbens shell administration 

of MPEP or MTEP dose-dependently attenuated cocaine-induced self-administration and 

reinstatement of drug-seeking behaviors in rodents. These observations were coupled with 

synaptic depotentiation of AMPA receptor-mediated excitatory potentials triggered by mGluR5 

antagonism in NAc (Benneyworth et al., 2019). Consistent with these results, mGluR5 activation 

using CHPG or DHPG promoted cocaine seeking behavior, in part, through activation of PLC and 

PKCγ downstream signaling (Schmidt et al., 2013; Li et al., 2018). In addition, cocaine-evoked 

synaptic changes were dependent on spinophilin, a multifunctional scaffolding protein enriched in 

dendritic spines (Allen et al., 1997; Areal et al., 2019). Spinophilin, through interaction with both 

mGluR5 and D2 receptors, regulates ERK1/2 activation and c-Fos and ΔFosb induction within 
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the striatum, leading to behavioral sensitization to cocaine (Di Sebastiano et al., 2016; Areal et 

al., 2019).  

Given its involvement in striatal circuitry, VGLUT3 signaling regulates the phenotypic 

behavior induced by drugs of abuse. Global loss of VGLUT3 blunted acute and chronic 

amphetamine-induced stereotypies, an effect coupled with marked reduction in ΔFosB 

expression levels in murine striatal tissues (Mansouri-Guilani et al., 2019). Furthermore, striatal 

VGLUT3 signaling regulates cocaine rewarding properties, albeit in a manner different from 

mGluR5. While the blockade of mGluR5 activity suppresses cocaine self-administration, Silencing 

VGLUT3 in mice resulted in marked increase in cocaine reinforcing properties, as tested by 

conditioned place preference and operant self-administration paradigms (Sakae et al., 2015). The 

surge in dopamine efflux in the NAc of VGLUT3-/- mice further indicates that mGluR5 signaling is 

not the exclusive VGLUT3 downstream effector in cocaine rewarding effects. Taken together, 

these studies strongly suggest that VGLUT3 and mGluR5 signaling co-regulate drug 

seeking/rewarding properties via mutually non-exclusive molecular mechanisms. 

Concluding remarks  

In this review, we have provided an overview on the functional and behavioral implications 

of VGLUT-mGluR signaling in the CNS. It is now clear that the crosstalk between VGLUT and 

mGluR is vital in shaping plasticity responses in regional brain circuitries. Particularly, the 

VGLUT3-mGluR5 signaling axis represents a promising potential in regulating specialized 

neuronal networks involved in motor coordination, emotions and cognition. The overlapping 

distribution of neuronal populations expressing VGLUT3 and mGluR5 suggest novel aspects of 

glutamatergic circuitry that is yet to be explored. The mGluR5 drug library is diverse and various 

selective modulators hold promising therapeutic potential (Sengmany and Gregory, 2018), yet a 

more holistic understanding of the glutamatergic circuitry will be critical for higher-precision 

therapies. In addition, novel selective VGLUT ligands are currently being developed (Poirel et al., 
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2020). Thanks to the major advances in pharmacological research and optogenetics, genetically 

targetable toolkit can be developed to profile and dissect VGLUT3-mGluR5 signaling axis. Greater 

insight into the coordination between VGLUT3 and mGluR5 signaling will be relevant for the 

general phenomena of synaptic crosstalk occurring in glutamatergic neurotransmission, and it will 

assist in advancing our understanding of the pathological roles of mGluR5-VGLUT3 axis in 

various neurological disorders. 
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Abbreviations 

ACh, acetylcholine; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; 

cAMP, cyclic adenosine monophosphate; CKK, cholecystokinin; CNS, central nervous system; 

CRD, Cysteine-rich domain; CTEP, 2-chloro-4-[(2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-

imidazol-4-yl)ethynyl] pyridine; DAG, diacylglycerol; DHPG, (S)-3,5-Dihydroxyphenylglycine; 

ERK, extracellular signal-regulated kinase; GABA, gamma-aminobutyric acid; GPCR, G protein-

coupled receptors; HPA, hypothalamic-pituitary-adrenal; iGluRs, ionotropic glutamate receptors; 

IP3, inositol 1,4,5 triphosphate; KA, kainate receptor; LID, levodopa-induced dyskinesia; LTD, 

long-term depression; MAPKs, mitogen activated protein kinases; mGluR, metabotropic 

glutamate receptor; MPEP, 2-methyl-6-(phenylethynyl)pyridine; MPTP, 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine; MSN, medium spiny neurons; MTEP, 3-[(2-methyl-4-thiazolyl) ethynyl] 

pyridine; NAc, nucleus accumbens; NAMs, negative allosteric modulators; NMDAR, N-methyl-D-

aspartate receptor; OCD, obsessive-compulsive disorders; PAMs, positive allosteric modulators; 

PD, parkinson’s disease; PDK1, phosphoinositide-dependent kinase-1; PFC, prefrontal cortex; 

PI3K, phosphoinositide 3-kinase; PIKE, PI3K enhancer-dependent mechanisms; PKC, protein 

kinase C; PLC, phospholipase C; SLC17, Solute Carrier 17; SNc, substantia nigra pars compacta; 

STN, subthalamic nucleus; TANs, tonically active interneurons; VFT: Venus Flytrap; VGLUTs, 

vesicular glutamate transporters; VTA, ventral tegmental area; 5HT, serotonin; 6-OHDA, 6-

hydroxydopamine.  
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Figure 1. Schematic diagram depicting VGLUT3-mGluR5 signaling axis in the striatum. 

mGluR5 are highly expressed on striatal medium spiny neurons (MSN) which form synaptic 

connections with VGLUT3+ tonically active interneurons. MSN also receives inputs from cortical 

(VGLUT1) and thalamic (VGLUT2) glutamatergic projections. This glutamatergic axis is 

modulated by dopaminergic inputs from substantia nigra. Abbreviations: ionotropic glutamate 

receptors (iGluR); glutamate (Glu); dopamine receptors (DR); vesicular monoamine transporter 2 

(VMAT2); acetylcholine receptors (AChR); acetylcholine (ACh); vesicular acetylcholine 

transporter (VAChT); Vesicular Glutamate Transporter (VGLUT); cannabinoid receptors (CBR). 

 

Figure 2. Schematic diagram depicting VGLUT3-mGluR5 signaling axis in the 

hippocampus. VGLUT3+-cholecystokinin (CKK)+ GABAergic basket cells form synaptic 

connections with mGluR5 on pyramidal neurons of CA1 region. In addition, pyramidal neurons 

receive inputs from subpopulations VGLUT3+ terminals from projecting raphe neurons. 

Abbreviations: ionotropic glutamate receptors (iGluR); glutamate (Glu); serotonin receptors 

(5HTR); serotonin (5HT); vesicular monoamine transporter 2 (VMAT2); Vesicular Glutamate 

Transporter (VGLUT); GABA receptors (GABAR); vesicular inhibitory amino acid transporter 

(VIAAT) 
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Table 1. Regional and cellular expression of VGLUTs and mGluRs across the CNS 

Brain region 
Predominant 

VGLUT 
isoform 

 Predominant 
mGluR 

subtype 

mGluR 
cellular 

expression 
Cell type References 

Cerebral cortex VGLUT1  

 
mGluR1 

 
mGluR5 

Mainly 
postsynaptic 

Neurons 
 

Neurons, 
Astrocytes 

(Shigemoto et al., 
1993; Fotuhi et al., 

1994; Petralia et al., 
1996; Saugstad et 
al., 1997; Biber et 

al., 2001; Tamaru et 
al., 2001; Corti et 

al., 2002; Varoqui et 
al., 2002) 

 
mGluR2 

 
mGluR3 

Presynaptic 
and 

postsynaptic 

Neurons 
 

Neurons, 
Astrocytes 

 mGluR4 
mGluR7 
mGluR8 

Mainly 
presynaptic 

Neurons 

Olfactory bulb 
VGLUT1  
VGLUT2 
VGLUT3 

 
mGluR1 

 
mGluR5 

Mainly 
postsynaptic 

Neurons 
 

Neurons, 
Astrocytes 

(Martin et al., 1992; 
Fotuhi et al., 1994; 
Ohishi et al., 1994; 

Duvoisin et al., 
1995; Romano et 
al., 1995; Corti et 

al., 2002; Herzog et 
al., 2004; Gabellec 

et al., 2007) 

 
mGluR2 

Presynaptic 
and 

postsynaptic 
Neurons 

 mGluR4 
mGluR8 
mGluR7 

Mainly 
presynaptic 

Neurons 

Striatum 
VGLUT1/2# 

VGLUT3 

 
mGluR5 

Mainly 
postsynaptic 

Neurons, 
Astrocytes 

(Shigemoto et al., 
1993; Testa et al., 
1994; Romano et 

al., 1995; Petralia et 
al., 1996; Tamaru et 

al., 2001; Corti et 
al., 2002; Fremeau 

et al., 2002; Schafer 
et al., 2002) 

 
mGluR3 

Presynaptic 
and 

postsynaptic 

Neurons, 
Astrocytes 

 

mGluR4 
mGluR7 

Mainly 
presynaptic 

Neurons 

 
# originates from cortical and thalamic projections to striatum 
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Hippocampus 
VGLUT1 
VGLUT3 

 

mGluR5 
Mainly 

postsynaptic 
Neurons, 

Astrocytes (Shigemoto et al., 
1993; Fotuhi et al., 
1994; Romano et 
al., 1995; Corti et 

al., 2002; Varoqui et 
al., 2002; Herzog et 

al., 2004) 

 

mGluR4 
mGluR7 

Mainly 
presynaptic 

Neurons 

Amygdala 
VGLUT1 
VGLUT2 

 

mGluR3 
Presynaptic 

and 
Postsynaptic 

Neurons, 
Astrocytes 

(Hitoshi Ohishi et 
al., 1993; Petralia et 
al., 1996; Kinoshita 
et al., 1998; Varoqui 

et al., 2002)  
mGluR7 

Mainly 
presynaptic 

Neurons 

Retina VGLUT1 

 

mGluR6 
Mainly 

postsynaptic 

Neurons, 
Microglia 

and 
Astrocytes 

(Nakajima et al., 
1993; Sherry et al., 

2003) 

Brainstem VGLUT2 

 
mGluR1 

Mainly 
postsynaptic 

Neurons 

(Corti et al., 1998; 
Hay et al., 1999; 

Hisano et al., 2000) 

 
mGluR2 

 
mGluR3 

Presynaptic 
and 

Postsynaptic 

Neurons 
 

Neurons, 
Astrocytes 

 mGluR7 
mGluR8 

Mainly 
presynaptic 

Neurons 

Thalamus 
VGLUT2 

 

 
mGluR1 

Mainly 
postsynaptic 

Neurons 

(Martin et al., 1992; 
Shigemoto et al., 
1992; Testa et al., 
1994; Mineff and 

Valtschanoff, 1999; 
Hisano et al., 2000) 

 

mGluR4 
mGluR7 

Mainly 
presynaptic 

Neurons 
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Hypothalamus VGLUT2 

 
mGluR5 

Mainly 
postsynaptic 

Neurons, 
Astrocytes 

(H. Ohishi et al., 
1993; Hitoshi Ohishi 

et al., 1993; 
Romano et al., 

1995; Hisano et al., 
2000), 

 
mGluR2 

 
mGluR3 

Presynaptic 
and 

postsynaptic 

Neurons 
 

Neurons, 
Astrocytes 

Deep 
cerebellar 

nuclei 
VGLUT2 

 
mGluR4 
mGluR7 

Mainly 
presynaptic 

Neurons 

(Corti et al., 1998, 
2002; Fremeau et 

al., 2001; Herzog et 
al., 2001) 

Cerebellar 
cortex 

VGLUT1 
VGLUT2* 

 
mGluR1 

Mainly 
postsynaptic 

Neurons 

(Martin et al., 1992; 
Ohishi et al., 1994; 

Kinoshita et al., 
1996; Tamaru et al., 
2001; Varoqui et al., 

2002; Hioki et al., 
2003) 

 

mGluR3 
Presynaptic 

and 
Postsynaptic 

Neurons, 
Astrocytes 

 

mGluR4 
mGluR7 

Mainly 
presynaptic 

Neurons 

Spinal cord  
VGLUT1 
VGLUT2 

 

mGluR5 
Mainly 

postsynaptic 
Neurons, 

Astrocytes 

(Jia et al., 1999; 
Azkue et al., 2001; 
Nishimaru et al., 

2005) 

 

 
* relatively lower expression 
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