TY - JOUR T1 - N-alkylaminobenzotriazoles as isozyme-selective suicide inhibitors of rabbit pulmonary microsomal cytochrome P-450. JF - Molecular Pharmacology JO - Mol Pharmacol SP - 25 LP - 32 VL - 30 IS - 1 AU - J M Mathews AU - J R Bend Y1 - 1986/07/01 UR - http://molpharm.aspetjournals.org/content/30/1/25.abstract N2 - To produce potent, isozyme-selective suicide inhibitors of cytochrome P-450 (P-450), a series of N-alkylated 1-aminobenzotriazole (ABT) derivatives was synthesized; these included the N-methyl, N-butyl (BuBT), N-benzyl (BBT), and N-alpha-methylbenzyl (alpha MB) analogues of ABT. The suicide inhibitors showing the greatest potency and isozyme selectivity were BBT and alpha MB, compounds which included molecular features for P-450 inactivation (the ABT moiety) and similarity to benzphetamine. ABT and its N-alkylated derivatives were tested as suicide inhibitors in rabbit lung microsomes, whose P-450 monooxygenase system has been well characterized in both untreated and beta-naphthoflavone- or 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated animals. ABT (10 mM) destroyed up to 99% of the total P-450 content of lung microsomes of untreated rabbits. At equimolar concentrations (10 microM), ABT was less effective than the N-alkylated compounds for the inhibition of P-450 isozyme 2-catalyzed benzphetamine N-demethylation (BND); in fact, BuBT, BBT, and alpha MB completely inhibited BND activity at this concentration and destroyed less than 40% of total pulmonary P-450. However, these compounds also inactivated 69-85% of isozyme 6-catalyzed 7-ethoxyresorufin O-deethylation. The most potent and isozyme-selective suicide inhibitor prepared was alpha MB: at 1 microM this compound inhibited approximately 80% of isozyme 2-catalyzed and 20% of isozyme 6-catalyzed monooxygenase activity but spared P-450 isozyme 5; at 2.5 microM it caused a near-complete loss (96 +/- 2%) of BND activity. The partition ratio of alpha MB, i.e., the molar ratio of inhibitor present to that of the P-450 destroyed, was 11 +/- 2, further demonstrating the potency of this compound. Experiments with BBT- and sodium phenobarbital-treated rats showed that the mechanism for suicidal inactivation of P-450 by this N-alkylated compound was by benzyne release, the same mechanism demonstrated earlier for the parent compound ABT. ER -