RT Journal Article SR Electronic T1 The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2',3'-didehydro-2',3'-dideoxyribonucleosides: a comparison with their parental 2',3'-dideoxyribonucleosides. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 162 OP 167 VO 32 IS 1 A1 J Balzarini A1 G J Kang A1 M Dalal A1 P Herdewijn A1 E De Clercq A1 S Broder A1 D G Johns YR 1987 UL http://molpharm.aspetjournals.org/content/32/1/162.abstract AB A series of 2',3'-didehydro-2',3'-dideoxyribonucleosides (ddeNs) [i.e., 2',3'-dideoxythymidinene (ddeThd), 2',3'-dideoxyuridinene (ddeUrd), 2',3'-dideoxycytidinene (ddeCyd), and 2',3'-dideoxyadenosinene (ddeAdo)] has been synthesized and the individual members compared in terms of their in vitro antiviral, antimetabolic, and cytostatic properties to their 2',3'-saturated counterparts (ddNs) (i.e., ddThd, ddUrd, ddCyd and ddAdo). All ddeNs except ddeUrd are potent and/or selective inhibitors of human immunodeficiency virus (HIV) in vitro, ddeCyd being the most potent (MIC50, 0.30 microM). The inhibitory effect of ddeCyd on ATH8 cell proliferation and HIV-induced cytopathogenicity is comparable to that of ddCyd. ddeThd is a more potent anti-HIV agent than ddThd (MIC50, 3.4 microM and 84 microM, respectively), but also more cytostatic (ID50, 172 microM and greater than 2000 microM, respectively). However, its in vitro chemotherapeutic index is higher than that of 3'-azido-2',3'-dideoxythymidine, a drug which has recently proven effective in the treatment of acquired immunodeficiency syndrome. ddeAdo has a weaker anti-HIV and a stronger cytostatic effect than ddAdo. Neither ddeUrd nor ddUrd shows significant anti-retroviral activity at 500 microM. In contrast to their anti-retroviral activity, both ddNs and ddeNs lack any appreciable inhibitory activity against a series of nononcogenic RNA and DNA viruses, pointing to their selectivity as anti-retroviral agents. All ddeNs show a progressive loss of anti-retroviral effect upon prolonged incubation with virus-infected cells. This phenomenon is most likely due to the chemical instability of these compounds, and not to a preferential enzymatic phosphorolytic cleavage of the ddeNs. Evidence is presented that ddeCyd and ddCyd, and ddeThd and ddThd are phosphorylated by cellular dCyd kinase and dThd kinase, respectively. However, the Ki values as alternate substrate inhibitors for their respective kinases are high (greater than 500 microM), indicating poor substrate activity and, thus, poor anabolism in ATH8 cells.