RT Journal Article SR Electronic T1 The role of caffeine-sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neurons in vitro. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 664 OP 673 VO 34 IS 5 A1 S A Thayer A1 L D Hirning A1 R J Miller YR 1988 UL http://molpharm.aspetjournals.org/content/34/5/664.abstract AB Intracellular Ca2+ stores were studied in sympathetic neurons grown in primary culture from the superior cervical ganglion of the rat. The [Ca2+]i was measured in single cells using the fluorescent Ca2+ indicator fura-2 and a sensitive microfluorimeter. Superfusion of the cells with 10 mM caffeine elicited a rapid and transient increase in [Ca2+]i in the absence of extracellular Ca2+, indicating the presence of a caffeine-sensitive intracellular Ca2+ storage site. After depletion of the store by mobilization of Ca2+ with caffeine, it could be refilled by elevating [Ca2+]i, allowing multiple caffeine-induced [Ca2+]i transients to be elicited from a single neuron. Ryanodine (1 microM), an alkaloid that promotes Ca2+ release from the sarcoplasmic reticulum, was an effective inhibitor of the caffeine-induced [Ca2+]i transients in sympathetic neurons. Exposure to ryanodine in the presence of caffeine was required to produce a subsequent inhibition of the caffeine-induced response, suggesting a "use-dependent" inhibition that may result from depletion of the Ca2+ stores. In contrast, dantrolene Na (10 microM), an agent known to interfere with Ca2+ release from the sarcoplasmic reticulum, also blocked the caffeine-induced [Ca2+]i transients, but in a time-dependent rather than a use-dependent manner. Electrophysiological measurements using the whole cell version of the patch-clamp technique were made simultaneously with [Ca2+]i microfluorimetric recordings. The magnitude of the [Ca2+]i transients elicited by step depolarizations closely paralleled the magnitude of Ca2+ influx via voltage-sensitive Ca2+ channels, regardless of whether the magnitude of the Ca2+ current was modified by varying the test pulse duration or potential. The relationship between the magnitude of Ca2+ influx and the resulting increase in [Ca2+]i saturated at large Ca2+ influxes resulting from long depolarizations, consistent with the activation of a large capacity, low affinity [Ca2+]i buffering mechanism. Caffeine (10 mM) and ryanodine (10 microM), applied singly or together, produced a small and variable decrease in the [Ca2+]i transient resulting from cell depolarization using the whole-cell patch-clamp technique. We conclude that mammalian sympathetic neurons possess intracellular Ca2+ stores with pharmacological characteristics that closely resemble those found in muscle but that these are relatively small and produce little amplification of [Ca2+]i transients resulting from Ca2+ influx through voltage-sensitive Ca2+ channels.