RT Journal Article SR Electronic T1 A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 880 OP 887 VO 34 IS 6 A1 A Dumuis A1 R Bouhelal A1 M Sebben A1 R Cory A1 J Bockaert YR 1988 UL http://molpharm.aspetjournals.org/content/34/6/880.abstract AB A nonclassical 5-hydroxytryptamine (5-HT) receptor mediates the stimulation of adenylate cyclase activity in mouse embryo colliculi neurons in primary culture. The pharmacological profile characterized with agonists and antagonists suggests that this 5-HT receptor does not appear to correspond to a known 5-HT receptor. On this 5-HT receptor, 5-HT (EC50 = 109 +/- 17 nM) and 5-methoxytryptamine (5-MeOT) were equipotent agonists. The other tryptamine derivatives, 5-carboxamidotryptamine (5-CT) and 5-methoxy-N,N-dimethyltryptamine (5-MeOT-N,N-DMT), were full potent agonists, whereas tryptamine, bufotenine, and 2-CH3-5-HT were weak partial agonists. Two selective 5-HT1A agonists: 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) and ipsapirone, could not stimulate adenylate cyclase. RU 24969, a tetrahydropyridoindole derivative that is a potent 5-HT1A and 5-HT1B agonist was also inactive, whereas RU 28253, another member of this series, could stimulate cAMP production. The action of antagonists acting on 5-HT1 or 5-HT2 receptors, such as methiothepin (5-HT1 and 5-HT2), metergoline (5-HT1 and 5-HT2), spiperone (5-HT1A and 5-HT2), (-)-pindolol (5-HT1B), mesulergine (5-HT1C), and ketanserin (5-HT2), were almost inactive in reversing the 5-HT stimulating effect. The selective 5-HT3 antagonist ICS 205 930 was a full competitive antagonist at this receptor. Nevertheless, MDL 72222, which is also a 5-HT3 antagonist, was very weak in antagonizing the 5-HT stimulatory effect. A receptor with similar characteristics has also been found in guinea pig hippocampal membranes. In these membranes, the second receptor of low affinity for 5-HT, termed RL, which is positively coupled to adenylate cyclase, was also antagonized by ICS 205 930. The relatively low affinity of this hippocampal receptor for 5-CT, its stimulation by RU 28253 but not by RU 24969, and its previously reported pharmacological characteristics support the contention that this 5-HT receptor and the 5-HT receptor of mouse embryo colliculi neurons in primary culture (both positively coupled to cAMP formation) present great homologies. Inasmuch as none of the classical specific 5-HT1 and 5-HT2 agonists or antagonists interact with these 5-HT receptors, it is unlikely that they belong to 5-HT1 or 5-HT2 receptor categories.(ABSTRACT TRUNCATED AT 400 WORDS)