%0 Journal Article %A D S Riddick %A S S Park %A H V Gelboin %A G S Marks %T Effects of a series of 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine on the major inducible cytochrome P-450 isozymes of rat liver. %D 1989 %J Molecular Pharmacology %P 626-634 %V 35 %N 5 %X Various 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) cause mechanism-based inactivation of cytochrome P-450 (P-450) by destroying the heme prosthetic group. We have examined the isozyme selectivity of representative DDC analogues with respect to the major inducible P-450 isozymes of rat liver. Hepatic microsomes from untreated, phenobarbital (PB)-treated, beta-naphthoflavone (beta NF)-treated, and dexamethasone (DEX)-treated rats were incubated with a DDC analogue and NADPH and were subsequently analyzed for P-450 and heme content, P-450 isozyme immunoreactivity, and enzyme activity. Compared with the uninduced state, 4-isopropyl-DDC caused slightly less P-450 destruction following beta NF induction and much greater destruction following DEX pretreatment. Also, 4-hexyl-DDC was found to cause less P-450 destruction following PB or DEX pretreatment, compared with results obtained with untreated rats. These results suggest that DDC analogues possess different isozyme selectivity profiles. Monoclonal antibodies (MAbs) directed against the major inducible isozymes of P-450 were used to probe Western blots of microsomal protein following DDC analogue treatment. The formation of lower molecular mass (45-55 kDa) immunoreactive proteins in microsomes from beta NF-treated rats following DDC analogue treatment was revealed by two MAbs (1-31-2 and 1-36-1), suggesting that the apoprotein of the major beta NF-inducible isozyme, P-450c, is subject to alteration by DDC analogues. In microsomes from DEX-treated rats, DDC analogues caused the formation of higher molecular mass (80, 94, and 115 kDa) proteins showing immunoreactivity with MAb 2-13-1, directed against a major DEX-inducible isozyme belonging to the P-450p family. These immunochemical findings are supported by the demonstration that DDC analogues also caused mechanism-based inhibition of the catalytic activity of P-450c (7-ethoxyresorufin O-deethylase) and P-450p (erythromycin N-demethylase) but not that of the major PB-inducible isozyme, P-450b (7-pentoxyresorufin O-dealkylase). The combined immunochemical and enzymic studies indicate that rat liver P-450 c and p are targets for mechanism-based inactivation by DDC analogues. %U https://molpharm.aspetjournals.org/content/molpharm/35/5/626.full.pdf