RT Journal Article SR Electronic T1 Mechanism of nerve growth factor mRNA regulation by interleukin-1 and basic fibroblast growth factor in primary cultures of rat astrocytes. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 186 OP 192 VO 40 IS 2 A1 X Vigé A1 E Costa A1 B C Wise YR 1991 UL http://molpharm.aspetjournals.org/content/40/2/186.abstract AB Neonatal rat cortical astrocytes in primary culture synthesize and secrete nerve growth factor (NGF). Interleukin-1 beta(IL-1) and basic fibroblast growth factor (bFGF) treatment of astrocytes increased NGF mRNA content by about 2-fold. The effect of these two factors was specific, because other growth factors, such as tumor necrosis factor-alpha, insulin-like growth factor-1, and epidermal growth factor, failed to change NGF mRNA content. The concentrations of IL-1 and bFGF causing half-maximal stimulation were 1 unit/ml and 1 ng/ml, respectively. The increase in NGF mRNA elicited by IL-1 and bFGF was maximal at 3 hr of incubation. In the presence of IL-1 this increase persisted for 36 hr, whereas in the presence of bFGF the initial increase in NGF mRNA was followed by a decrease to 50% of control levels after 24 hr of incubation. Readdition of bFGF after 24 hr of treatment gave a similar increase in NGF mRNA content, suggesting that the decrease at 24 hr was not due to receptor desensitization. The effect of IL-1 was reversible, because removal of IL-1 after 3 hr of incubation resulted in a decrease of NGF mRNA content to control levels by 6 hr, whereas a readdition of IL-1 at this time led to a 2-3-fold increase in NGF mRNA content after an additional 3 hr of treatment. This second increase in NGF mRNA was also maintained for several hours. The combined treatment of astrocytes with maximally effective doses of IL-1 and bFGF produced an additive increase in NGF mRNA content, suggesting that different mechanisms are operative. Treatment of astrocytes with cycloheximide increased (about 6-fold) NGF mRNA content, and this content failed to increase further with IL-1 or bFGF treatment. Experiments using actinomycin D indicated that IL-1 increased the stability of the NGF mRNA. bFGF treatment failed to change this parameter. Thus, IL-1 increases NGF mRNA content in astrocytes, at least in part, by stabilizing mRNA, whereas bFGF does not affect mRNA stability but may act at the level of NGF gene transcription.