TY - JOUR T1 - Prostaglandin receptors in NIH 3T3 cells: coupling of one receptor to adenylate cyclase and of a second receptor to phospholipase C. JF - Molecular Pharmacology JO - Mol Pharmacol SP - 633 LP - 638 VL - 40 IS - 5 AU - F Gusovsky Y1 - 1991/11/01 UR - http://molpharm.aspetjournals.org/content/40/5/633.abstract N2 - In intact NIH 3T3 murine fibroblasts, prostaglandins (PGs) F2 alpha and E2 induce dose-dependent stimulation of inositol monophosphate generation. PGF2 alpha is greater than 50-fold more potent than PGE2 in eliciting this response. In streptolysin O-permeabilized NIH 3T3 cells, PGF2 alpha and PGE2 induced dose-dependent accumulations of inositol bis- and trisphosphates, which were dependent on the presence of the guanine nucleotide guanosine-5'-O-(3-thio)triphosphate (GTP gamma S) (10 microM). Pretreatment of cells for 16 hr with 100 nM PGF2 alpha resulted in a significant reduction of not only subsequent PGF2 alpha- and PGE2-induced but also GTP gamma S-induced stimulation of inositol phosphate formation in permeabilized cells. PGF2 alpha-induced accumulation of inositol phosphates was partially inhibited by pretreatment with pertussis toxin (1 microgram/ml, 4 hr). The inhibition by pertussis toxin was small but was not related to cyclic AMP formation, because forskolin, which activates adenylate cyclase, did not mimic pertussis toxin-induced inhibition. In the same cell line, PGF2 alpha and PGE2 induced a dose-dependent accumulation of cAMP and a dose-dependent potentiation of 0.5 microM forskolin-stimulated cAMP formation. PGF2 alpha and PGE2 were almost equipotent in eliciting both responses. However, PGF2 alpha was less efficacious than PGE2 and, in the presence of forskolin, PGF2 alpha at 10 microM induced an inhibitory effect on cAMP accumulation. Such inhibition may be related to PGF2 alpha-mediated phospholipase C activation and subsequent stimulation of protein kinase C, because the phorbol ester phorbol 12-myristate-13-acetate, which directly activates protein kinase C, also inhibited forskolin- and PGE2-induced cAMP accumulation. Pretreatment with PGF2 alpha for 16 hr did not reduce subsequent stimulation of cAMP accumulation by PGF2 alpha or PGE2. The results indicate that in NIH 3T3 cells two receptors for PGs are present, one that couples to adenylate cyclase, probably through Gs, and does not exhibit selectivity between PGF2 alpha and PGE2 and a second receptor that couples to phospholipase C through a guanine nucleotide-binding protein that is not sensitive to pertussis toxin pretreatment. The latter shows at least 40-fold selectivity towards PGF2 alpha over PGE2. Because long treatment with PGF2 alpha resulted in desensitization of the GTP gamma S-induced response, it is possible that long exposure to PGF2 alpha may down-regulate the guanine nucleotide-binding involved in phospholipase C signal transduction. ER -