PT - JOURNAL ARTICLE AU - R Haring AU - D E Pellegrini-Giampietro AU - S R Zukin AU - R S Zukin AU - M A Scheideler TI - High efficiency reconstitution of a phencyclidine/MK-801 receptor binding site solubilized from rat forebrain membranes. DP - 1991 Nov 01 TA - Molecular Pharmacology PG - 666--673 VI - 40 IP - 5 4099 - http://molpharm.aspetjournals.org/content/40/5/666.short 4100 - http://molpharm.aspetjournals.org/content/40/5/666.full SO - Mol Pharmacol1991 Nov 01; 40 AB - Phencyclidine (PCP) receptors have been solubilized from rat forebrain membranes with the zwitterionic detergent 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate. Specific binding of the potent PCP receptor ligands [3H]thienyl-phencyclidine (TCP) and [3H]MK-801 was restored by incorporating extracted membrane protein into lipid vesicles prepared from a total brain lipid extract. A nearly quantitative recovery of solubilized receptor activity was achieved; this was dependent upon both the concentration of detergent used during membrane solubilization and the concentration of added lipid used during the reconstitution. The single, saturable, binding site measured for both [3H]TCP and [3H]MK-801 in solubilized and reconstituted preparations exhibited properties similar to those of the high affinity PCP binding site labeled by these ligands in brain membranes. The ability of ligands selective for this site (MK-801, TCP, and dexoxadrol) to competitively displace specific [3H]TCP binding was retained after solubilization and reconstitution, although IC50 values measured for these ligands were shifted to higher concentrations. Levoxadrol and haloperidol were ineffective at displacing the radioligand binding in both membrane and vesicle preparations. The additive and dose-dependent ability of glutamate and glycine to enhance [3H]TCP binding to the solubilized/reconstituted receptor further suggests that a direct interaction with the N-methyl-D-aspartate receptor/ion channel complex has been preserved in the vesicle preparations. The photoaffinity labeling of two polypeptides (Mr 98,000 and 59,000) by azido-[3H]PCP was demonstrated in the vesicle preparations; this was largely prevented by competitive displacement of the radioligand with PCP before photolysis. These results establish both an essential lipid dependency and polypeptide composition for the high affinity, haloperidol-insensitive, PCP receptor in brain.