PT - JOURNAL ARTICLE AU - J F Riou AU - P Helissey AU - L Grondard AU - S Giorgi-Renault TI - Inhibition of eukaryotic DNA topoisomerase I and II activities by indoloquinolinedione derivatives. DP - 1991 Nov 01 TA - Molecular Pharmacology PG - 699--706 VI - 40 IP - 5 4099 - http://molpharm.aspetjournals.org/content/40/5/699.short 4100 - http://molpharm.aspetjournals.org/content/40/5/699.full SO - Mol Pharmacol1991 Nov 01; 40 AB - With the aim of obtaining new inhibitors of topoisomerases, we have evaluated various heterocyclic quinone derivatives for their ability to induce topoisomerase I (Topo I)- or Topo II-associated DNA breaks, using P388 cell nuclear extract. Several compounds belonging to the indolo[3,2-c]quinoline-1,4-dione series have been shown to possess DNA-cleavage activity. Further analysis using purified Topo I and II preparations has indicated that the members of the series stimulate cleavable complex formation of both Topo I and II. 3-Methoxy-11H-pyrido[3',4':4,5]pyrrolo[3,2-c] quinoline-1,4-dione (AzalQD), one of the most active members of the series, stimulates cleavable complex formation and inhibits the catalytic activities of both eukaryotic Topo I and II, with, however, less potency than camptothecin and etoposide. Topo I cleavage site patterns for AzalQD and camptothecin were found to be nearly identical, with, however, some differences in cleavage site intensities. Use of filter binding assays also indicates that AzalQD is at least 10 times more potent against Topo I than against Topo II. Structure-activity relationships of indoloquinolinedione derivatives have been established and have shown that Topo I and II inhibitions are strongly linked, with a dose-selective preference towards Topo I. AzalQD does not display detectable DNA-unwinding properties. AzalQD induces a preferential cytotoxicity for the yeast strain JN2-134 bearing the human top1 gene under the control fo the GAL1 promoter, indicating that Topo I inhibition is responsible for the yeast cytotoxicity. These data indicate that AzalQD and its structural analogs represent a new distinct class of eukaryotic Topo I and II inhibitors.