TY - JOUR T1 - Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. JF - Molecular Pharmacology JO - Mol Pharmacol SP - 943 LP - 951 VL - 40 IS - 6 AU - L B Zhang AU - B Horowitz AU - I L Buxton Y1 - 1991/12/01 UR - http://molpharm.aspetjournals.org/content/40/6/943.abstract N2 - The parasympathetic neurotransmitter acetylcholine, acting postsynaptically at the smooth muscle muscarinic receptor, is a principle determinant of colonic motility. In order to elucidate the receptor signal-transduction events responsible for muscarinic receptor-induced contraction of colonic circular smooth muscle, we present here and in the accompanying work studies designed to characterize the muscarinic receptors present in colon and to determine their biochemical coupling. Muscarinic receptor subtypes in canine colonic circular smooth muscle were characterized using radioligand binding techniques. The nonselective muscarinic receptor antagonist radioligand [3H]quinuclidinyl benzilate ([3H]QNB) binds rapidly and reversibly to a single class of saturable sites in colon circular smooth muscle membranes, with an affinity (KD) for the antagonist radioligand of 79.8 +/- 12.6 pM and a density of 123.3 +/- 18.7 fmol/mg of protein. Experiments using membranes prepared from isolated cells purified from the circular smooth muscle layer of canine colon (KD = 102.4 +/- 13.5 pM) confirm the smooth muscle origin of the binding and yield a receptor density of 124,340 receptors/cell. The order of potencies of selective muscarinic receptor antagonists in competition with [3H]QNB for binding to colonic receptors is 4-diphenylacetoxy-N-methylpiperidine methobromide greater than methoctramine greater than AF-DX 116 greater than pirenzepine. Unlike other antagonists tested, pirenzepine competition of [3H]QNB binding is biphasic. The high and low affinities deduced from nonlinear fit of the binding data in colon correlate very well with affinities determined for pirenzepine in mixtures of both submandibular gland (M3) and atrium (M2), indicating the presence of two muscarinic receptor subtypes (82% M2, 18% M3) in colon circular smooth muscle. The muscarinic agonist carbachol binds to both high and low affinity sites in colon, and addition of guanine nucleotide (100 microM GTP gamma S) shifts the agonist competition curve to the right, without eliminating high affinity binding sites. Agonist competition studies with a known ratio of M2 and M3 receptors, obtained by mixing pure M2 and M3 populations, predict the result obtained in colon. cDNA probes specific for each of the muscarinic receptors m1 through m4 were hybridized to colon RNA in a Northern blot analysis. Only m2 and m3 probes hybridized to colon RNA, suggesting the presence of both M2 and M3 receptors. Our data demonstrate that the colon circular smooth muscle contains muscarinic receptors of both the M2 and M3 subtypes, which may be coupled to disparate signal transduction pathways important in the physiological actions of acetylcholine in this tissue. ER -