TY - JOUR T1 - Differential down- and up-regulation of rat brain opioid receptor types and subtypes by buprenorphine. JF - Molecular Pharmacology JO - Mol Pharmacol SP - 173 LP - 179 VL - 44 IS - 1 AU - M M Belcheva AU - J Barg AU - R J McHale AU - S Dawn AU - M T Ho AU - E Ignatova AU - C J Coscia Y1 - 1993/07/01 UR - http://molpharm.aspetjournals.org/content/44/1/173.abstract N2 - The induction of opioid receptor adaptation by mixed agonist-antagonists such as buprenorphine has not been investigated. To this end, neonatal rats were given injections of buprenorphine (0.1-2.5 mg/kg/day) and mu binding (Kd and Bmax) to brain membranes was measured with [3H][D-Ala2,MePhe4,Gly-ol5]enkephalin. At doses of buprenorphine of > or = 0.5 mg/kg, mu sites were reduced 47-75%, without changes in affinity. Chronic administration of the structurally related partial agonist diprenorphine (2.5-75 mg/kg) failed to alter mu binding. Apparent loss of sites due to receptor blockade by residual buprenorphine was ruled out by several lines of evidence. Bmax values for delta ([3H][D-Ser2,L-Leu5]enkephalyl-Thr) and kappa ([3H]U69593) binding were elevated 1.9-4.2-fold by buprenorphine treatment. In adult rats buprenorphine (0.5-2.5 mg/kg) reduced mu-opioid binding to forebrain membranes dose dependently, by 25-77%. [3H][D-Ser2,L-Leu5] Enkephalyl-Thr-labeled delta subtype receptors and kappa sites in adult forebrain membranes were up-regulated 2-3-fold. The delta subtype receptors that bind [3H][D-Pen2,D-Pen5]enkephalin in neonatal or adult brain membranes were unaffected by 0.5-2.5 mg/kg buprenorphine treatment. Down-regulation (70-74%) of mu sites and up-regulation (1.9-6.7 fold) of delta and kappa receptors were also observed in synaptic plasma membrane-enriched and microsomal fractions from buprenorphine-treated adult rat brain. Because agonist-induced opioid receptor down-regulation is difficult to elicit in adult mammalian brain, these data indicate that buprenorphine is a useful tool to study brain opioid receptor adaptation in vivo. ER -