TY - JOUR T1 - Quantitation of mitochondrial DNA in human lymphoblasts by a competitive polymerase chain reaction method: application to the study of inhibitors of mitochondrial DNA content. JF - Molecular Pharmacology JO - Mol Pharmacol SP - 1063 LP - 1069 VL - 46 IS - 6 AU - H Zhang AU - D A Cooney AU - A Sreenath AU - Q Zhan AU - R Agbaria AU - E E Stowe AU - A J Fornace, Jr AU - D G Johns Y1 - 1994/12/01 UR - http://molpharm.aspetjournals.org/content/46/6/1063.abstract N2 - With increasing awareness of the mitochondrial toxicity associated with certain 2',3'-dideoxynucleosides used in anti-human immunodeficiency virus therapy, procedures for quantitative analyses of drug effects on mitochondrial DNA (mtDNA) have assumed enhanced importance. For this reason we have developed a method to measure the copy numbers of mtDNA in cultured MOLT-4 cells. First a hybrid competitive DNA template was synthesized by conventional polymerase chain reaction (PCR), using two custom-synthesized 40-mer composite primers incorporating mitochondrial displacement loop sequences linked by a non-mitochondrial cDNA template (a 76-base pair sequence from the tat/rev region of human immunodeficiency virus cDNA). For the competitive assay, increasing known copy numbers of the hybrid competitive template were added as an internal control to samples containing total cellular DNA. With this approach, two competitive PCR products were generated, 1) a mitochondrial displacement loop-derived fragment (182 base pairs) and 2) a competitive DNA template-derived fragment (156 base pairs). Absolute quantitation was achieved by radiometric comparison of the relative amounts of the two products. To test the versatility of this method, varying amounts of competitive template (6.6 x 10(4) to 6.6 x 10(9) copies) were used with a fixed quantity of total cellular DNA taken from cells cultured for 9 days in the presence or absence of selected pyrimidine and purine dideoxynucleosides. The results showed that the copy number of cellular mtDNA is 823 +/- 71 copies/cell in MOLT-4 cells. Little selective depletion of mtDNA, compared with total cellular DNA, was seen with the purine dideoxynucleosides examined; however, when the cells were exposed to the pyrimidine dideoxynucleoside 2',3'-dideoxycytidine (50 nM) for 9 days, mtDNA content was specifically depleted, although total cellular DNA decreased by only 10%. Thus, in addition to the presently used methods of assessing mitochondrial impairment, i.e., Southern blot analysis and electron microscopy, the competitive PCR method provides a third and convenient assay, with particular applicability to determination of mtDNA in very small numbers of cells. ER -