PT - JOURNAL ARTICLE AU - H Y Kim AU - D Thomas AU - M R Hanley TI - Stimulation of Ca(2+)-dependent membrane currents in Xenopus oocytes by microinjection of pyrimidine nucleotide-glucose conjugates. DP - 1996 Feb 01 TA - Molecular Pharmacology PG - 360--364 VI - 49 IP - 2 4099 - http://molpharm.aspetjournals.org/content/49/2/360.short 4100 - http://molpharm.aspetjournals.org/content/49/2/360.full SO - Mol Pharmacol1996 Feb 01; 49 AB - Microinjection, but not extracellular application, of cytidine-5'-diphosphate-D-glucose (CDPG) has been shown to elicit Ca(2+)-dependent currents in Xenopus laevis oocytes. These responses were comparable to those of inositol-1,4,5-trisphosphate (InsP3) in being both rapid and dose dependent. For example, maximal amplitudes of CDPG-induced current were similar (approximately 365 +/- 75 nA at 1 microM CDPG) to those of InsP3. The CDPG currents were insensitive to removal of extracellular Ca2+, indicating the dependence on Ca2+ release from intracellular Ca2+ stores but not on Ca2+ entry through plasma membrane. CDPG-induced currents were reduced or abolished by pretreatment with thapsigargin, by injection of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or by extracellular perfusion of the Cl- channel blocker niflumic acid but were insensitive to injection of the InsP3 antagonist heparin. These results suggest that CDPG induces Ca2+ discharge from intracellular Ca2+ stores via a mechanism distinct from that of InsP3 in Xenopus oocytes. Another pyrimidine nucleotide-glucose derivative, uridine-5'-diphosphate-alpha-D-glucose, also induced Ca(2+)-dependent currents, but the activity was lower than that of CDPG (maximal amplitude, 272 +/- 62 nA). Other nucleotide-glucose compounds (adenosine-5'-diphosphate-D-glucose, guanosine-5'-diphosphate-D-glucose, and thymidine-5'-diphosphate-D-glucose) had no current responses when injected into oocytes. After injection of CDPG, CDPG-induced Ca2+ release appeared to couple to a Ca2+ entry pathway similar to that coupled to InsP3. These results indicate that pyrimidine nucleotide-glucose conjugates may provide novel pharmacological tools for the study of Ca2+ signaling in oocytes.