RT Journal Article SR Electronic T1 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) Induces Fenfluramine-Like Proliferative Actions on Human Cardiac Valvular Interstitial Cells in Vitro JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 1223 OP 1229 DO 10.1124/mol.63.6.1223 VO 63 IS 6 A1 Vincent Setola A1 Sandra J. Hufeisen A1 K. Jane Grande-Allen A1 Ivan Vesely A1 Richard A. Glennon A1 Bruce Blough A1 Richard B. Rothman A1 Bryan L. Roth YR 2003 UL http://molpharm.aspetjournals.org/content/63/6/1223.abstract AB Recent findings have implicated the 5-hydroxytryptamine 2B (5-HT2B) serotonin receptor in mediating the heart valve fibroplasia [valvular heart disease (VHD)] and primary pulmonary hypertension observed in patients taking the now-banned appetite suppressant fenfluramine (Pondimin, Redux). Via large-scale, random screening of a portion of the receptorome, we have discovered that the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) and its N-demethylated metabolite 3,4-methylenedioxyamphetamine (MDA) each preferentially bind to and activate human recombinant 5-HT2B receptors. We also demonstrate that MDMA and MDA, like fenfluramine and its N-deethylated metabolite norfenfluramine, elicit prolonged mitogenic responses in human valvular interstitial cells via activation of 5-HT2B receptors. We also report that pergolide and dihydroergotamine, two drugs recently demonstrated to induce VHD in humans, potently activate 5-HT2B receptors, thus validating this assay system for its ability to predict medications that might induce VHD. Our discovery that MDMA and a major metabolite, MDA, induce prolonged mitogenic responses in vitro similar to those induced by fenfluramine and norfenfluramine in vivo (i.e., valvular interstitial cell fibroplasia) predict that long-term MDMA use could lead to the development of fenfluramine-like VHD. Because of the widespread abuse of MDMA, these findings have major public health implications. These findings also underscore the necessity of screening current and future drugs at h5-HT2B receptors for agonist actions before their use in humans.