RT Journal Article SR Electronic T1 Identification of Various Allosteric Interaction Sites on M1 Muscarinic Receptor Using 125I-Met35-Oxidized Muscarinic Toxin 7 JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 1641 OP 1651 DO 10.1124/mol.105.020883 VO 69 IS 5 A1 Carole Fruchart-Gaillard A1 Gilles Mourier A1 Catherine Marquer A1 André Ménez A1 Denis Servent YR 2006 UL http://molpharm.aspetjournals.org/content/69/5/1641.abstract AB Monoiodinated, Met35-oxidized muscarinic toxin 7 (MT7ox) was synthesized, and its affinity constants for free or N-methyl scopolamine (NMS)-occupied hM1 receptor were measured directly by equilibrium and kinetic binding experiments. Identical values were obtained with the two types of assay methods, 14 pM and 0.9 nM in free or NMS-liganded receptor states, respectively, highlighting a strong negative cooperativity between this allosteric toxin and NMS. Identical results were obtained with indirect binding experiments with [3H]NMS using the ternary complex model, clearly demonstrating the reciprocal nature of this cooperativity. Furthermore, the effects of various orthosteric and allosteric agents on the dissociation kinetic of 125I-MT7ox were measured and show that, except for the MT1 toxin, all of the ligands studied [NMS, atropine, gallamine, brucine, tacrine, staurosporine, and (9S,10S,12R)-2,3,9,10,11-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid hexyl ester (KT5720)] interact allosterically with muscarinic toxin 7. Equilibrium binding experiments with 125I-MT7ox and [3H]NMS were conducted to reveal the effects of these ligands on the free receptor, and affinity constants (pKx values) were calculated using the allosteric ternary complex model. Our results suggest that MT7 toxin interacts with hM1 receptor at a specific allosteric site, which may partially overlap those identified previously for “classic” or “atypical” allosteric agents and highlight the potential of this new allosteric tracer in studying allosterism at muscarinic receptors.