RT Journal Article SR Electronic T1 Activation of TRPA1 Channels by the Fatty Acid Amide Hydrolase Inhibitor 3′-Carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597) JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 1209 OP 1216 DO 10.1124/mol.106.033621 VO 71 IS 5 A1 Wende Niforatos A1 Xu-Feng Zhang A1 Marc R. Lake A1 Karl A. Walter A1 Torben Neelands A1 Thomas F. Holzman A1 Victoria E. Scott A1 Connie R. Faltynek A1 Robert B. Moreland A1 Jun Chen YR 2007 UL http://molpharm.aspetjournals.org/content/71/5/1209.abstract AB As a member of the transient receptor potential (TRP) ion channel superfamily, the ligand-gated ion channel TRPA1 has been implicated in nociceptive function and pain states. The endogenous ligands that activate TRPA1 remain unknown. However, various agonists have been identified, including environmental irritants (e.g., acrolein) and ingredients of pungent natural products [e.g., allyl isothiocyanate (ITC), cinnamaldehyde, allicin, and gingerol]. In general, these agents are either highly reactive, nonselective, or not potent or efficacious, significantly limiting their utilities in the study of TRPA1 channel properties and biological functions. In a search for novel TRPA1 agonists, we identified 3′-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597), a potent and systemically active inhibitor of fatty acid amide hydrolase (FAAH). This enzyme is responsible for anandamide degradation and therefore has been pursued as an antinociceptive and antiepileptic drug target. Using Ca2+ influx assays and patch-clamp techniques, we demonstrated that URB597 could activate heterologously expressed human and rat TRPA1 channels, whereas two other FAAH inhibitors (i.e., URB532 and Compound 7) had no effect. When applied to inside-out membrane patches expressing rat TRPA1, URB597 elicited single-channel activities with a unitary conductance of 40 pS. Furthermore, URB597 activated TRPA1 channels endogenously expressed in a population of rat dorsal root ganglion neurons that also responded to ITC. In contrast to its effect on TRPA1, URB597 inhibited TRPM8 and had no effects on TRPV1 or TRPV4. Thus, we conclude that URB597 is a novel agonist of TRPA1 and probably activates the channel through a direct gating mechanism. The American Society for Pharmacology and Experimental Therapeutics