TY - JOUR T1 - Heme-Oxygenase-1 Induction and Carbon Monoxide-Releasing Molecule Inhibit Lipopolysaccharide (LPS)-Induced High-Mobility Group Box 1 Release in Vitro and Improve Survival of Mice in LPS- and Cecal Ligation and Puncture-Induced Sepsis Model in Vivo JF - Molecular Pharmacology JO - Mol Pharmacol SP - 173 LP - 182 DO - 10.1124/mol.109.055137 VL - 76 IS - 1 AU - Konstantin Tsoyi AU - Tae Yu Lee AU - Young Soo Lee AU - Hye Jung Kim AU - Han Geuk Seo AU - Jae Heun Lee AU - Ki Churl Chang Y1 - 2009/07/01 UR - http://molpharm.aspetjournals.org/content/76/1/173.abstract N2 - We examined our hypothesis that heme-oxygenase-1 (HO-1)-derived carbon monoxide (CO) inhibits the release of high-mobility group box 1 (HMGB1) in RAW264.7 cells activated with lipopolysaccharide (LPS) in vitro and in LPS- or cecal ligation and puncture (CLP)-induced septic mice in vivo, so that HO-1 induction or CO improves survival of sepsis in rodents. We found that pretreatment with HO-1 inducers (hemin, cobalt protoporphyrin IX) or transfection of HO-1 significantly inhibited HMGB1 release, which was blocked by HO-1 small interfering RNA, in cells activated by LPS. Carbon monoxide-releasing molecule 2 (CORM-2) but not bilirubin or deferoxamine inhibited HMGB1 release in LPS-activated macrophages. Oxyhemoglobin reversed the effect of HO-1 inducers on HMGB1 release. Translocation of HMGB1 from nucleus to cytosol was significantly inhibited by HO-1 inducers, CORM-2, or HO-1 transfection. Neutralizing antibodies to tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon-β, and Nω-nitro-l-arginine methyl ester hydrochloride but not N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398) significantly inhibited HMGB1 release in LPS-activated cells. Production of TNF-α, IL-1β, and IFN-β was significantly reduced by pretreatment of HO-1 inducers, CORM-2, or HO-1 transfection in LPS-activated cells. Plasma levels of HMGB1 in mice challenged with LPS or CLP were significantly reduced by the administration of HO-1 inducers or CORM-2, which was accompanied by either reduction (pretreatment) or no change (delayed administration) of serum TNF-α and IL-1β levels. Regardless of pretreatment or delayed administration, CORM-2 and hemin rescued mice from lethal endotoxemia and sepsis induced by LPS or CLP. Taken together, we concluded that HO-1-derived CO reduces HMGB1 release in LPS-activated cells and LPS- or CLP-induced animal model of sepsis. ER -