RT Journal Article SR Electronic T1 Targeting Group II Metabotropic Glutamate (mGlu) Receptors for the Treatment of Psychosis Associated with Alzheimer's Disease: Selective Activation of mGlu2 Receptors Amplifies β-Amyloid Toxicity in Cultured Neurons, Whereas Dual Activation of mGlu2 and mGlu3 Receptors Is Neuroprotective JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 618 OP 626 DO 10.1124/mol.110.067488 VO 79 IS 3 A1 Filippo Caraci A1 Gemma Molinaro A1 Giuseppe Battaglia A1 Maria Laura Giuffrida A1 Barbara Riozzi A1 Anna Traficante A1 Valeria Bruno A1 Milena Cannella A1 Sara Merlo A1 Xushan Wang A1 Beverly A. Heinz A1 Eric S. Nisenbaum A1 Thomas C. Britton A1 Filippo Drago A1 Maria Angela Sortino A1 Agata Copani A1 Ferdinando Nicoletti YR 2011 UL http://molpharm.aspetjournals.org/content/79/3/618.abstract AB Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic β-amyloid protein (Aβ) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4′-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified Aβ-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1′S,2′S)-2-(9-xanthylmethyl)-2-(2′-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated Aβ toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (−)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-β1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against Aβ neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N-(2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified Aβ toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of mGlu2 receptors enhances neuronal vulnerability to Aβ, whereas dual activation of mGlu2 and mGlu3 receptors is protective against Aβ-induced toxicity.