RT Journal Article SR Electronic T1 κ-Opioid Receptor Inhibition of Calcium Oscillations in Spinal Cord Neurons JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 1061 OP 1071 DO 10.1124/mol.111.071456 VO 79 IS 6 A1 Lakshmi Kelamangalath A1 Shashank M. Dravid A1 Joju George A1 Jane V. Aldrich A1 Thomas F. Murray YR 2011 UL http://molpharm.aspetjournals.org/content/79/6/1061.abstract AB Mouse embryonic spinal cord neurons in culture exhibit spontaneous calcium oscillations from day in vitro (DIV) 6 through DIV 10. Such spontaneous activity in developing spinal cord contributes to maturation of synapses and development of pattern-generating circuits. Here we demonstrate that these calcium oscillations are regulated by κ opioid receptors (KORs). The κ opioid agonist dynorphin (Dyn)-A (1–13) suppressed calcium oscillations in a concentration-dependent manner, and both the nonselective opioid antagonist naloxone and the κ-selective blocker norbinaltorphimine eliminated this effect. The KOR-selective agonist (+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) mimicked the effect of Dyn-A (1–13) on calcium oscillations. A κ-specific peptide antagonist, zyklophin, was also able to prevent the suppression of calcium oscillations caused by Dyn-A (1–13). These spontaneous calcium oscillations were blocked by 1 μM tetrodotoxin, indicating that they are action potential-dependent. Although the L-type voltage-gated calcium channel blocker nifedipine did not suppress calcium oscillations, the N-type calcium channel blocker ω-conotoxin inhibited this spontaneous response. Blockers of ionotropic glutamate receptors, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline and dizocilpine maleate (MK-801), also suppressed calcium oscillations, revealing a dependence on glutamate-mediated signaling. Finally, we have demonstrated expression of KORs in glutamatergic spinal neurons and localization in a presynaptic compartment, consistent with previous reports of KOR-mediated inhibition of glutamate release. The KOR-mediated inhibition of spontaneous calcium oscillations may therefore be a consequence of presynaptic inhibition of glutamate release.