PT - JOURNAL ARTICLE AU - Mark L. Jewell AU - Richard M. Breyer AU - Kevin P. M. Currie TI - Regulation of Calcium Channels and Exocytosis in Mouse Adrenal Chromaffin Cells by Prostaglandin EP3 Receptors AID - 10.1124/mol.110.068569 DP - 2011 Jun 01 TA - Molecular Pharmacology PG - 987--996 VI - 79 IP - 6 4099 - http://molpharm.aspetjournals.org/content/79/6/987.short 4100 - http://molpharm.aspetjournals.org/content/79/6/987.full SO - Mol Pharmacol2011 Jun 01; 79 AB - Prostaglandin (PG) E2 controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1–EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE2 in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca2+ influx through voltage-gated Ca2+ channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE2 might modulate chromaffin cell function. PGE2 did not alter resting intracellular [Ca2+] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit CaV2 voltage-gated Ca2+ channel currents (ICa). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other Gi/o-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of ICa. Finally, changes in membrane capacitance showed that Ca2+-dependent exocytosis was reduced in parallel with ICa. To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE2.