TY - JOUR T1 - Phosphodiesterase 4 Inhibitors Augment the Ability of Formoterol to Enhance Glucocorticoid-Dependent Gene Transcription in Human Airway Epithelial Cells: A Novel Mechanism for the Clinical Efficacy of Roflumilast in Severe Chronic Obstructive Pulmonary Disease JF - Molecular Pharmacology JO - Mol Pharmacol SP - 894 LP - 906 DO - 10.1124/mol.112.083493 VL - 83 IS - 4 AU - Thunicia Moodley AU - Sylvia M. Wilson AU - Taruna Joshi AU - Christopher F. Rider AU - Pawan Sharma AU - Dong Yan AU - Robert Newton AU - Mark A. Giembycz Y1 - 2013/04/01 UR - http://molpharm.aspetjournals.org/content/83/4/894.abstract N2 - Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an “add-on” medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. Using a glucocorticoid response element (GRE) luciferase reporter transfected into human airway epithelial cells [both bronchial epithelium + adenovirus 12 - SV40 hybrid (BEAS-2B) cells and primary cultures], roflumilast enhanced fluticasone propionate–induced GRE-dependent transcription. Roflumilast also produced a sinistral displacement of the concentration-response curves that described the augmentation of GRE-dependent transcription by the LABA formoterol. In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD. ER -