TY - JOUR T1 - Sensory Nerve Terminal Mitochondrial Dysfunction Activates Airway Sensory Nerves via Transient Receptor Potential (TRP) Channels JF - Molecular Pharmacology JO - Mol Pharmacol SP - 1007 LP - 1019 DO - 10.1124/mol.112.084319 VL - 83 IS - 5 AU - Lika Nesuashvili AU - Stephen H. Hadley AU - Parmvir K. Bahia AU - Thomas E. Taylor-Clark Y1 - 2013/05/01 UR - http://molpharm.aspetjournals.org/content/83/5/1007.abstract N2 - Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing “nociceptor-like” mouse bronchopulmonary C-fibers. Action potential discharge was reduced by the TRPA1 antagonist HC-030031. Inhibition of TRPV1 further reduced C-fiber activation. In mouse dissociated vagal neurons, antimycin A induced Ca2+ influx that was significantly reduced by pharmacological inhibition or genetic knockout of either TRPA1 or TRPV1. Inhibition of both TRPA1 and TRPV1 was required to abolish antimycin A-induced Ca2+ influx in vagal neurons. Using an HEK293 cell expression system, antimycin A induced concentration-dependent activation of both hTRPA1 and hTRPV1 but failed to activate nontransfected cells. Myxothiazol (complex III Qo site inhibitor) inhibited antimycin A-induced TRPA1 activation, as did the reducing agent dithiothreitol. Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrially-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling. ER -