RT Journal Article SR Electronic T1 Adverse Effects of Doxorubicin and Its Metabolic Product on Cardiac RyR2 and SERCA2A JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 438 OP 449 DO 10.1124/mol.114.093849 VO 86 IS 4 A1 Amy D. Hanna A1 Alex Lam A1 Steffi Tham A1 Angela F. Dulhunty A1 Nicole A. Beard YR 2014 UL http://molpharm.aspetjournals.org/content/86/4/438.abstract AB The use of anthracycline chemotherapeutic drugs is restricted owing to potentially fatal cardiotoxic side effects. It has been hypothesized that anthracycline metabolites have a primary role in this cardiac dysfunction; however, information on the molecular interactions of these compounds in the heart is scarce. Here we provide novel evidence that doxorubicin and its metabolite, doxorubicinol, bind to the cardiac ryanodine receptor (RyR2) and to the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2A) and deleteriously alter their activity. Both drugs (0.01 μM–2.5 μM) activated single RyR2 channels, and this was reversed by drug washout. Both drugs caused a secondary inhibition of RyR2 activity that was not reversed by drug washout. Preincubation with the reducing agent dithiothreitol (DTT, 1 mM) prevented drug-induced inhibition of channel activity. Doxorubicin and doxorubicinol reduced the abundance of thiol groups on RyR2, further indicating that oxidation reactions may be involved in the actions of the compounds. Ca2+ uptake into sarcoplasmic reticulum vesicles by SERCA2A was inhibited by doxorubicinol, but not doxorubicin. Unexpectedly, in the presence of DTT, doxorubicinol enhanced the rate of Ca2+ uptake by SERCA2A. Together the evidence provided here shows that doxorubicin and doxorubicinol interact with RyR2 and SERCA2A in similar ways, but that the metabolite acts with greater efficacy than the parent compound. Both compounds modify RyR2 and SERCA2A activity by binding to the proteins and also act via thiol oxidation to disrupt SR Ca2+ handling. These actions would have severe consequences on cardiomyocyte function and contribute to clinical symptoms of acute anthracycline cardiotoxicity.