RT Journal Article SR Electronic T1 Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284 JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 177 OP 187 DO 10.1124/mol.116.104737 VO 90 IS 3 A1 Smith, Deborah L. A1 Davoren, Jennifer E. A1 Edgerton, Jeremy R. A1 Lazzaro, John T. A1 Lee, Che-Wah A1 Neal, Sarah A1 Zhang, Lei A1 Grimwood, Sarah YR 2016 UL http://molpharm.aspetjournals.org/content/90/3/177.abstract AB Selective activation of the M1 muscarinic acetylcholine receptor (mAChR) via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer’s disease. Herein, we describe the characterization of an M1 PAM radioligand, 8-((1S,2S)-2-hydroxycyclohexyl)-5-((6-(methyl-t3)pyridin-3-yl)methyl)-8,9-dihydro-7H-pyrrolo[3,4-hour]quinolin-7-one ([3H]PT-1284), as a tool for characterizing the M1 allosteric binding site, as well as profiling novel M1 PAMs. 8-((1S,2S)-2-Hydroxycyclohexyl)-5-((6-methylpyridin-3-yl)methyl)-8,9-dihydro-7H-pyrrolo[3,4-hour]quinolin-7-one (PT-1284 (1)) was shown to potentiate acetylcholine (ACh) in an M1 fluorometric imaging plate reader (FLIPR) functional assay (EC50, 36 nM) and carbachol in a hippocampal slice electrophysiology assay (EC50, 165 nM). PT-1284 (1) also reduced the concentration of ACh required to inhibit [3H]N-methylscopolamine ([3H]NMS) binding to M1, left-shifting the ACh Ki approximately 19-fold at 10 μM. Saturation analysis of a human M1 mAChR stable cell line showed that [3H]PT-1284 bound to M1 mAChR in the presence of 1 mM ACh with Kd, 4.23 nM, and saturable binding capacity (Bmax), 6.38 pmol/mg protein. M1 selective PAMs were shown to inhibit [3H]PT-1284 binding in a concentration-responsive manner, whereas M1 allosteric and orthosteric agonists showed weak affinity (>30 μM). A strong positive correlation (R2 = 0.86) was found to exist between affinity values generated for nineteen M1 PAMs in the [3H]PT-1284 binding assay and the EC50 values of these ligands in a FLIPR functional potentiation assay. These data indicate that there is a strong positive correlation between M1 PAM binding affinity and functional activity, and that [3H]PT-1284 can serve as a tool for pharmacological investigation of M1 mAChR PAMs.