RT Journal Article SR Electronic T1 β-arrestin1 and distinct CXCR4 structures are required for SDF-1 to down-regulate CXCR4 cell-surface levels in neuroblastoma JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP mol.113.089714 DO 10.1124/mol.113.089714 A1 Ian C. Clift A1 Adebowale O. Bamidele A1 Christie Rodriguez-Ramirez A1 Kimberly N. Kremer A1 Karen E Hedin YR 2014 UL http://molpharm.aspetjournals.org/content/early/2014/01/22/mol.113.089714.abstract AB CXCR4 is a G protein-coupled receptor (GPCR) located on the cell-surface that signals upon binding the chemokine SDF-1 (also called CXCL12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell-surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of Protein Kinase C (PKC) similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the IL motif at residues 328 and 329, and residues 343-352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338 and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as GRK2. Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343-352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343-352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis.