@article {Luomol.116.106468, author = {Jiansong Luo and John M. Busillo and Ralf Stumm and Jeffrey L. Benovic}, title = {G Protein-Coupled Receptor Kinase 3 and Protein Kinase C Phosphorylate the Distal C-Terminal Tail of the Chemokine Receptor CXCR4 and Mediate Recruitment of Beta-Arrestin}, elocation-id = {mol.116.106468}, year = {2017}, doi = {10.1124/mol.116.106468}, publisher = {American Society for Pharmacology and Experimental Therapeutics}, abstract = {Phosphorylation of G protein-coupled receptors (GPCRs) is a key event for cell signaling and regulation of receptor function. Previously, using tandem mass spectrometry, we identified two phosphorylation sites at the distal C-terminal tail of the chemokine receptor CXCR4, but were unable to determine which specific residues were phosphorylated. Here, we demonstrate that serines 346 and/or 347 (Ser-346/7) of CXCR4 are phosphorylated upon stimulation with the agonist CXCL12 as well as a CXCR4 pepducin, ATI-2341. ATI-2341, a Gi-biased CXCR4 agonist, induced more robust phosphorylation of Ser-346/7 compared to CXCL12. Knockdown of GRK2, GRK3 or GRK6 reduced CXCL12-induced phosphorylation of Ser-346/7 with GRK3 knockdown having the strongest effect, while inhibition of the conventional PKC isoforms reduced phosphorylation of Ser-346/7 induced by either CXCL12 or ATI-2341. The loss of GRK3- or PKC-mediated phosphorylation of Ser-346/7 impaired the recruitment of β-arrestin to CXCR4. We also found that a pseudo-substrate peptide inhibitor for PKCζ effectively inhibited CXCR4 phosphorylation and signaling, most likely by functioning as a non-specific CXCR4 antagonist. Together, these studies demonstrate the role Ser-346/7 plays in arrestin recruitment and initiation of the process of receptor desensitization and provide insight into the dysregulation of CXCR4 observed in patients with various forms of WHIM syndrome.}, issn = {0026-895X}, URL = {https://molpharm.aspetjournals.org/content/early/2017/03/22/mol.116.106468}, eprint = {https://molpharm.aspetjournals.org/content/early/2017/03/22/mol.116.106468.full.pdf}, journal = {Molecular Pharmacology} }