RT Journal Article SR Electronic T1 A Functional NaV1.7-NaVAb Chimera with a Reconstituted High-Affinity ProTx-II Binding Site JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 310 OP 317 DO 10.1124/mol.117.108712 VO 92 IS 3 A1 Ramkumar Rajamani A1 Sophie Wu A1 Iyoncy Rodrigo A1 Mian Gao A1 Simon Low A1 Lisa Megson A1 David Wensel A1 Rick L. Pieschl A1 Debra J. Post-Munson A1 John Watson A1 David R. Langley A1 Michael K. Ahlijanian A1 Linda J. Bristow A1 James Herrington YR 2017 UL http://molpharm.aspetjournals.org/content/92/3/310.abstract AB The NaV1.7 voltage-gated sodium channel is implicated in human pain perception by genetics. Rare gain of function mutations in NaV1.7 lead to spontaneous pain in humans whereas loss of function mutations results in congenital insensitivity to pain. Hence, agents that specifically modulate the function of NaV1.7 have the potential to yield novel therapeutics to treat pain. The complexity of the channel and the challenges to generate recombinant cell lines with high NaV1.7 expression have led to a surrogate target strategy approach employing chimeras with the bacterial channel NaVAb. In this report we describe the design, synthesis, purification, and characterization of a chimera containing part of the voltage sensor domain 2 (VSD2) of NaV1.7. Importantly, this chimera, DII S1–S4, forms functional sodium channels and is potently inhibited by the NaV1.7 VSD2 targeted peptide toxin ProTx-II. Further, we show by [125I]ProTx-II binding and surface plasmon resonance that the purified DII S1–S4 protein retains high affinity ProTx-II binding in detergent. We employed the purified DII S1–S4 protein to create a scintillation proximity assay suitable for high-throughput screening. The creation of a NaV1.7-NaVAb chimera with the VSD2 toxin binding site provides an important tool for the identification of novel NaV1.7 inhibitors and for structural studies to understand the toxin-channel interaction.