Supplemental Material for # Identification of Novel Small-Molecule Agonists for Human Formyl Peptide Receptors and Pharmacophore Models of their Recognition Liliya N. Kirpotina^a, Andrei I. Khlebnikov^a, Igor A Schepetkin^a, Richard D. Ye^c, Marie-Josèphe Rabiet^d, Mark A. Jutila^a, and Mark T. Quinn^a ^aDepartment of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA ^bDepartment of Chemistry, Altai State Technical University, Barnaul 656038, Russia ^cDepartment of Pharmacology, University of Illinois, Chicago, IL 60612 ^dCEA, DSV, iRTSV, Laboratoire Biochimie et Biophysique des Systèmes Intégrés, Grenoble, France (M.-J.R.) ### Supplemental Table S1. Structure and Activity of Acetohydrazide Derivatives | # | R ₁ | R ₂ | Ca ²⁺ Mobilization | | | | | |-----------|--|-------------------|---|------|-----------|-----------|------------| | | | | EC ₅₀ (μM) and Efficacy (%) ^a | | | | | | | | | FPR1 | | FPR2 | | PMN | | | | | RBL | HL60 | RBL | HL-60 | | | AG-09/92 | NO_2 | O CH ₃ | N.A. | N.A. | 6.0 (30) | 1.6 (20) | 3.7 (80) | | AG-09/93 | NO ₂ | Br | N.A. | N.A. | 2.9 (80) | 2.9 (30) | 2.2 (30) | | AG-09/94 | NO ₂ | Br | N.A. | N.A. | N.A. | N.A. | N.A. | | AG-09/95 | NO ₂ | | N.A. | N.A. | N.A. | N.A. | N.A. | | AG-09/96 | NO_2 | NH | N.A. | N.A. | 17.2 (30) | 14.3 (40) | 35.4 (100) | | AG-09/97 | NO ₂ | S | N.A. | N.A. | N.A. | N.A. | N.A. | | AG-09/98 | NO_2 | S | N.A. | N.A. | N.A. | N.A. | 17.0 (110) | | AG-09/99 | -O-CH₃ | S | N.A. | N.A. | N.A. | N.A. | N.A. | | AG-09/100 | NO ₂ | S N | N.A. | N.A. | N.A. | N.A. | N.A. | | AG-09/101 | CH ₃ H ₃ C CH ₃ | | N.A. | N.A. | 3.9 (95) | 2.6 (105) | 1.1 (110) | | AG-09/7 | N NH NH | | N.A. | N.A. | 5.4 (70) | 11.2 (50) | 10.8 (35) | | AG-09/102 | Br NNH NH | | N.A. | N.A. | N.A. | N.A. | N.A. | ^aMedian effective concentration values (EC₅₀) were determined by nonlinear regression analysis of the doseresponse curves (5-6 points) generated using GraphPad Prism 5 with 95% confidential interval (p<0.05). Efficacy (in parentheses) is expressed as % of the response induced by 5 nM fMLF (FPR1) or 5 nM WKYMVm (FPR2). N.A., very low response (efficacy <20% of positive control) or no activity (no Ca²⁺ flux response was observed during the 3 min after addition of compounds under investigation). ### **Supplemental Figure S1** ## Correlation of Ca²⁺ mobilization and Chemotaxis in Human Neutrophils Treated with the Selected FPR1/FPR2 Agonists **Legend:** EC_{50} values for Ca^{2+} mobilization in human neutrophils were plotted versus EC_{50} values for chemotactic activity in human neutrophils for the selected compounds (see Figure 1 and Table 1). Compound **AG-26** was omitted from the regression calculation and is shown as outlier. Dashed lines indicate area of the 95% confidence band. # Supplemental Figure S2 Desensitization of FPR2 Response by Low Efficacy Agonists **Legend: Panel A.** HL-60 FPR2 cells were loaded with Fluo-4AM dye and pretreated with 0.75, 3, or 12 μ M **AG-09/75** or vehicle (DMSO), and calcium flux was monitored. The same wells were then treated with 5 nM WKYMVm, and calcium flux was monitored following this second treatment. **Panel B.** HL-60 FPR2 cells were loaded with Fluo-4AM dye and pretreated for 5 minutes with the indicated concentrations of **AG-09/75** (\square) and **AG-09/76** (\bullet). Control cells were pretreated with DMSO. Following pretreatment, 5 nM WKYMVm was added, and calcium flux was monitored as described. The data are presented as mean \pm S.D. of duplicate samples. In both panels, the data are representative of three experiments. Supplemental Figure S3 The Best Overlays of Antagonists on FPR1 and FPR2 Templates **Legend:** Overlay of **3570-0208** (panel A) and **24428242** (panel B) on the FPR1 template and **BB-V-115** (panel C) and **796276** (panel B) on the FPR2 template. Field points of the FPR1/FPR2 templates are shown by polyhedra, field points of antagonist molecules are shown by spheres, and inhibitor conformations are depicted with grey skeletons. Field points are colored as follows: blue = electron-rich (negative); red = electron-deficient (positive); yellow = van der Waals attractive (steric); and orange = hydrophobic. Arrows indicate fragments of antagonist molecules that don't overlap with the agonist template.