#### **Supplemental Material**

for

# Identification of Novel Small-Molecule Agonists for Human Formyl Peptide Receptors and Pharmacophore Models of their Recognition

Liliya N. Kirpotina<sup>a</sup>, Andrei I. Khlebnikov<sup>a</sup>, Igor A Schepetkin<sup>a</sup>, Richard D. Ye<sup>c</sup>, Marie-Josèphe Rabiet<sup>d</sup>, Mark A. Jutila<sup>a</sup>, and Mark T. Quinn<sup>a</sup>

<sup>&</sup>lt;sup>a</sup>Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA

<sup>&</sup>lt;sup>b</sup>Department of Chemistry, Altai State Technical University, Barnaul 656038, Russia

<sup>&</sup>lt;sup>c</sup>Department of Pharmacology, University of Illinois, Chicago, IL 60612

<sup>&</sup>lt;sup>d</sup>CEA, DSV, iRTSV, Laboratoire Biochimie et Biophysique des Systèmes Intégrés, Grenoble, France (M.-J.R.)

### Supplemental Table S1. Structure and Activity of Acetohydrazide Derivatives

| #         | R <sub>1</sub>                                   | R <sub>2</sub>    | Ca <sup>2+</sup> Mobilization                       |      |           |           |            |
|-----------|--------------------------------------------------|-------------------|-----------------------------------------------------|------|-----------|-----------|------------|
|           |                                                  |                   | EC <sub>50</sub> (μM) and Efficacy (%) <sup>a</sup> |      |           |           |            |
|           |                                                  |                   | FPR1                                                |      | FPR2      |           | PMN        |
|           |                                                  |                   | RBL                                                 | HL60 | RBL       | HL-60     |            |
| AG-09/92  | $NO_2$                                           | O CH <sub>3</sub> | N.A.                                                | N.A. | 6.0 (30)  | 1.6 (20)  | 3.7 (80)   |
| AG-09/93  | NO <sub>2</sub>                                  | Br                | N.A.                                                | N.A. | 2.9 (80)  | 2.9 (30)  | 2.2 (30)   |
| AG-09/94  | NO <sub>2</sub>                                  | Br                | N.A.                                                | N.A. | N.A.      | N.A.      | N.A.       |
| AG-09/95  | NO <sub>2</sub>                                  |                   | N.A.                                                | N.A. | N.A.      | N.A.      | N.A.       |
| AG-09/96  | $NO_2$                                           | NH                | N.A.                                                | N.A. | 17.2 (30) | 14.3 (40) | 35.4 (100) |
| AG-09/97  | NO <sub>2</sub>                                  | S                 | N.A.                                                | N.A. | N.A.      | N.A.      | N.A.       |
| AG-09/98  | $NO_2$                                           | S                 | N.A.                                                | N.A. | N.A.      | N.A.      | 17.0 (110) |
| AG-09/99  | -O-CH₃                                           | S                 | N.A.                                                | N.A. | N.A.      | N.A.      | N.A.       |
| AG-09/100 | NO <sub>2</sub>                                  | S N               | N.A.                                                | N.A. | N.A.      | N.A.      | N.A.       |
| AG-09/101 | CH <sub>3</sub> H <sub>3</sub> C CH <sub>3</sub> |                   | N.A.                                                | N.A. | 3.9 (95)  | 2.6 (105) | 1.1 (110)  |
| AG-09/7   | N NH NH                                          |                   | N.A.                                                | N.A. | 5.4 (70)  | 11.2 (50) | 10.8 (35)  |
| AG-09/102 | Br NNH NH                                        |                   | N.A.                                                | N.A. | N.A.      | N.A.      | N.A.       |

<sup>&</sup>lt;sup>a</sup>Median effective concentration values (EC<sub>50</sub>) were determined by nonlinear regression analysis of the doseresponse curves (5-6 points) generated using GraphPad Prism 5 with 95% confidential interval (p<0.05). Efficacy (in parentheses) is expressed as % of the response induced by 5 nM fMLF (FPR1) or 5 nM WKYMVm (FPR2). N.A., very low response (efficacy <20% of positive control) or no activity (no Ca<sup>2+</sup> flux response was observed during the 3 min after addition of compounds under investigation).

### **Supplemental Figure S1**

## Correlation of Ca<sup>2+</sup> mobilization and Chemotaxis in Human Neutrophils Treated with the Selected FPR1/FPR2 Agonists



**Legend:**  $EC_{50}$  values for  $Ca^{2+}$  mobilization in human neutrophils were plotted versus  $EC_{50}$  values for chemotactic activity in human neutrophils for the selected compounds (see Figure 1 and Table 1). Compound **AG-26** was omitted from the regression calculation and is shown as outlier. Dashed lines indicate area of the 95% confidence band.

# Supplemental Figure S2 Desensitization of FPR2 Response by Low Efficacy Agonists



**Legend: Panel A.** HL-60 FPR2 cells were loaded with Fluo-4AM dye and pretreated with 0.75, 3, or 12  $\mu$ M **AG-09/75** or vehicle (DMSO), and calcium flux was monitored. The same wells were then treated with 5 nM WKYMVm, and calcium flux was monitored following this second treatment. **Panel B.** HL-60 FPR2 cells were loaded with Fluo-4AM dye and pretreated for 5 minutes with the indicated concentrations of **AG-09/75** ( $\square$ ) and **AG-09/76** ( $\bullet$ ). Control cells were pretreated with DMSO. Following pretreatment, 5 nM WKYMVm was added, and calcium flux was monitored as described. The data are presented as mean  $\pm$  S.D. of duplicate samples. In both panels, the data are representative of three experiments.

Supplemental Figure S3
The Best Overlays of Antagonists on FPR1 and FPR2 Templates



**Legend:** Overlay of **3570-0208** (panel A) and **24428242** (panel B) on the FPR1 template and **BB-V-115** (panel C) and **796276** (panel B) on the FPR2 template. Field points of the FPR1/FPR2 templates are shown by polyhedra, field points of antagonist molecules are shown by spheres, and inhibitor conformations are depicted with grey skeletons. Field points are colored as follows: blue = electron-rich (negative); red = electron-deficient (positive); yellow = van der Waals attractive (steric); and orange = hydrophobic. Arrows indicate fragments of antagonist molecules that don't overlap with the agonist template.