Identification of transporters associated with etoposide sensitivity of stomach cancer cell lines and methotrexate sensitivity of breast cancer cell lines by quantitative targeted absolute proteomics

Wataru Obuchi, Sumio Ohtsuki, Yasuo Uchida, Ken Ohmine, Takao Yamori, Tetsuya Terasaki

Molecular Pharmacology

Supplementary Table 1 Peptide probe sequences and selected ions for absolute quantification of membrane proteins and metabolic enzymes

Gene name	Alias	Probe sequence	SRM/MRM transition (m/z)				
			Q1	Q3-1	Q3-2	Q3-3	Q3-4
ABCA9	ABCA9	QHISDAK	399.7	420.2	533.3	581.3	652.3
		QHISDA*K	401.7	424.2	537.3	581.3	656.3
ABCB5	ABCB5	SADLIVTLK	480.3	686.5	801.5	573.4	460.3
		SADLIVTL*K	483.8	693.5	808.5	580.4	467.3
SLC16A3	MCT4	LLDLSVFR	482.4	849.5	736.4	621.4	508.3
		LLDLSVF*R	487.4	859.5	746.4	631.4	518.3
SLC22A9	UST3	DTLTLEILK	523.4	716.4	829.5	502.3	615.4
		DTLTLEIL*K	526.9	723.4	836.5	509.3	622.4
SLC22A14	OCTL2	DQPLSESLNHSSQIR	570.9	590.3	727.4	503.3	841.4
		DQPLSESLNHSSQI*R	573.2	597.3	734.4	510.3	848.4
SLC47A2	MATE2	YLQNQGWLK	575.3	873.5	745.4	631.4	986.5
		YLQNQGWL*K	578.8	880.5	752.4	638.4	993.5
SLC47A2	MATE2k	TPEEAHALSAPTSR	733.9	939.5	802.4	731.4	618.3
		TPEEAHALSAP*TSR	736.9	945.5	808.4	737.4	624.3
DHFR	DHFR	NGDLPWPPLR	582.8	765.4	482.3	668.4	385.3
		NGDLPWPPL*R	586.3	772.4	489.3	675.4	392.3
FPGS	FPGS	DPIFQPPSPPK	611.8	622.4	341.2	897.5	750.4
		DPIFQPPSPP*K	614.8	628.4	347.2	903.5	756.4
GGH	GGH	YYIAASYVK	539.3	638.4	567.3	751.4	496.3
		YYIAASYV*K	542.3	644.4	573.3	757.4	502.3

Typically, doubly charged precursor ions (singly charged for some peptides) were selected (Q1). Four transitions per peptide (Q3-1, -2, -3 and -4), corresponding to high-intensity fragment ions, were selected. Bold letters with asterisks indicate amino acid residues labeled with stable isotope (${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$). Other peptides were listed in previous reports (Ohtsuki et al., 2011; Uchida et al., 2011).

Ohtsuki S, Uchida Y, Kubo Y and Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100(9):3547-3559.
Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J and Terasaki T (2011) Quantitative targeted absolute proteomics of human blood-brain barrier
transporters and receptors. J Neurochem 117(2):333-345.

Supplementary Table 2 Conditions of LC-MS/MS analysis in uptake studies

Molecule	SRM/MRM transition $(\mathrm{m} / \mathrm{z})$		DP (V)	CE (V)
	Q1	Q3		
Etoposide	589.2	229.2	76	23
Gemcitabine	264.1	112.1	66	25
Methotrexate (MTX)	455.4	308.2	151	27
MTX-Glu $_{2}$	584.6	308.2	156	37
MTX-Glu $_{3}$	713.7	308.2	181	47
MTX-Glu $_{4}$	842.8	308.2	150	51
MTX-Glu $_{5}$	971.9	308.2	150	63
MTX-Glu $_{6}$	1101.0	308.2	150	78
MTX-Glu $_{7}$	1230.1	308.2	150	89

Supplementary Information 1. Derivation of Eq. 1 and 2

Based on the model shown in Fig S1A, medium-to-cell influx rate and cell-to-medium efflux rate are described as:
$\begin{array}{lll}\text { Medium-to-cell influx rate }=\mathrm{PS}_{\text {inf }} \times \mathrm{C}_{\text {medium }} & \text { Supp Eq. } 1 \\ \text { Cell-to-medium efflux rate }=\left(\mathrm{PS}_{\text {eff,MK insensitive }}+\mathrm{PS}_{\text {eff,MK sensitive }}\right) \times \mathrm{C}_{\text {cell }} & \text { Supp Eq. } 2\end{array}$

Fig S1. Schematic diagram illustrating the PS products for the accumulation of substrates in human stomach cancer cells.

PS ${ }_{\text {inf }}, \mathrm{PS}_{\text {eff,MK }}$ insensitive and PSeff,MK sensitive represent influx clearance, MK571-insensitive efflux clearance and MK571-sensitive efflux clearance, respectively.
$\mathrm{C}_{\text {medium }}$ and $\mathrm{C}_{\text {cell }}$ represent drug concentration in medium (nM) and cell ($\mathrm{nmol} / \mu \mathrm{g}$ ceullar protein), respectively. $\mathrm{V}_{\text {cell }}$ represents volume of cells ($\mu \mathrm{L}$).

Cell-to-medium (C/M) ratio represents the apparent distribution volume of the substrate in the cell generated by the polarized transport rate across the plasma membrane, and is defined as $\left(\mathrm{C}_{\text {cell }} \mathrm{x} \mathrm{V}_{\text {cell }}\right) / \mathrm{C}_{\text {medium }}$. Considering the steady-state condition, medium-to-cell influx rate is equal to cell-to-medium efflux rate. Therefore, steady-state $\mathrm{C} / \mathrm{M}_{\text {ss }}$ ratio can be transformed to Eq. 1 in the text using Supp Eq. 1 and 2.
$\mathrm{PS}_{\text {inf }} \times \mathrm{C}_{\text {mediium }}=\left(\mathrm{PS}_{\text {efff,MK insensitive }}+\mathrm{PS}_{\text {efff,MK sensitive }}\right) \times \mathrm{C}_{\text {cell }}$
$\mathrm{C} / \mathrm{M}_{\text {sS }}$ ratio $=\left(\mathrm{C}_{\text {cell }} \times \mathrm{V}_{\text {cell }}\right) / \mathrm{C}_{\text {medium }}=\mathrm{PS}_{\text {inf }} \times \mathrm{V}_{\text {cell }} /\left(\mathrm{PS}_{\text {eff, MK insensitive }}+\mathrm{PS}_{\text {eff, }, \mathrm{MK} \mathrm{sensitive}}\right)$
Eq. 1 in the text

In the presence of MK571, $\mathrm{PS}_{\text {eff,MK }}$ sensitive becomes zero, as shown in Fig S1B. Therefore, steady-state $\mathrm{C} / \mathrm{M}_{\mathrm{ss}}$ ratio, MK571 can be described as:
$\mathrm{C} / \mathrm{M}_{\text {sS }}$ ratio,MK571 $=\mathrm{PS}_{\text {inf }} \mathrm{X} \mathrm{V}_{\text {cell }} / \mathrm{PS}_{\text {eff,MK insensitive }}$

Then, Eq. 2 in the text was derived as follows:
$1 /\left(\mathrm{C} / \mathrm{M}_{\mathrm{ss}}\right.$ ratio $)-1 /\left(\mathrm{C} / \mathrm{M}_{\mathrm{ss}}\right.$ ratio,MK571)
$=\left(\mathrm{PS}_{\text {eff,MK insensitive }}+\mathrm{PS} \mathrm{S}_{\text {eff,MK sensitive }}\right) /\left(\mathrm{PS}_{\text {inf }} \mathrm{X} \mathrm{V}_{\text {cell }}\right)-\mathrm{PS} \mathrm{Seff}_{\text {e,MK insensitive }} /\left(\mathrm{PS}_{\text {inf }} \mathrm{X} \mathrm{V}_{\text {cell }}\right)$
$=\mathrm{PS}_{\text {eff, MK sensitive }} /\left(\mathrm{PS}_{\text {inf }} \times \mathrm{V}_{\text {cell }}\right)$
Eq. 2 in the text

