Title: A molecular pharmacologist's guide to GPCR crystallography. Authors: Chayne L. Piscitelli, James Kean, Chris de Graaf, Xavier Deupi Journal: Molecular Pharmacology

Supplemental Data

Supplementary Table 1. List of all crystallized GPCRs including the main modifications in the constructs.

			Class A					
Family	Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystal _{Tool}	llization Method	PDB IDs
		ΔN 3-32, ΔC 368-483, ΔICL3 244-271, 277-278	R068S, M090V, Y227A, A282L, F327A, F338M	C116L (exp.), C358A (palm.)			VD	2VT4, 2YCW, 2YCX, 2YCY, 2YCZ
	β1 adrenergic turkey	ΔΝ 3-32, ΔC 368-483, ΔICL3 244-271	R068S, M090V, Y227A, A282L, F327A, F338M	C116L (exp.), C358A (palm.)			VD	2Y00, 2Y01, 2Y02, 2Y03, 2Y04, 4AMI, 4AMJ, 4GPO, 3ZPR, 3ZPQ
		ΔN 3-32, ΔC 368-483, ΔICL3 244-271	R068S, M090V, Y227A, A282L, F327A, F338M, I129V, D322K, Y343L	C116L (exp.), C358A (palm.)			LCP	4BVN
		ΔC 366-413		N187E (N-gly)		Fab5	VD	2R4R
		ΔΝ 1-24, ΔC 366-413		N187E (N-gly)		Fab5	VD	2R4S
		ΔC 366-413, ΔICL3 234-259		N187E (N-glyc.)	T4L ICL3		LCP	2RH1
Amine		ΔC 349-413, ΔICL3 234-259	E122W	N187E (N-glyc.)	T4L ICL3		LCP	3D4S, 3NY8, 3NY9, 3NYA
		ΔC 366-413, ΔICL3 234-259		N187E (N-glyc.)	T4L ICL3	Nb80	LCP	3P0G
	β2 adrenergic human	ΔN 1-23, ΔC 349-413, ΔICL3 234-259		N187E (N-glyc.), H93C (cov. lig.)	T4L ICL3		LCP	3PDS
		ΔN 1-28, ΔC 366-413, ΔICL3 235-263		N187E (N-glyc.), H93C (cov. lig.), M96T (exp), M98T (exp)	T4L N-term	Nb6B9	LCP	4QKX
		ΔN 1-28, ΔC 366-413		N187E (N-glyc.), M96T (exp.), M98T (exp.)	T4L N-term	Nb35	LCP	3SN6
		ΔN 1-28, ΔC 366-413, ΔICL3 235-263		N187E (N-glyc.), M96T (exp.), M98T (exp.)	T4L N-term		LCP	4GBR
	-	ΔN 1-28, ΔC 366-413, ΔICL3 235-263		N187E (N-glyc.), M96T (exp.), M98T (exp.)	T4L N-term	Nb6B9	LCP	4LDE, 4LDL, 4LDO

				Class A				
Family	Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystal Tool	llization Method	PDB IDs
	dopamine D3 human	ΔICL3 222-318	L119W		T4L ICL3		LCP	3PBL
	histamine 1 human	ΔN 1-19, ΔICL3 222-404			T4L ICL3		LCP	3RZE
	serotonin 1B human	ΔN 1-32, ΔICL3 240-305	L138W		bRIL ICL3		LCP	4IAR
		ΔN 1-32, ΔICL3 240-303	L138W		bRIL ICL3		LCP	4IAQ
Amine	serotonin 2B human	ΔN 1-35, ΔC 406-481, ΔICL3 249-313	M144W		bRIL ICL3		LCP	4IB4, 4NC3
	M2 muscarinic	ΔICL3 218-376		N2D (N-glyc.), N3D (N-glyc.), N6D (N-glyc.), N9D (N-glyc.)	T4L ICL3		LCP	3UON
	acetyicnoline human	ΔICL3 233-374		N2D (N-glyc.), N3D (N-glyc.), N6D (N-glyc.), N9D (N-glyc.)		Nb9-8	LCP	4MQS, 4MQT
	M3 muscarinic acetylcholine rat	ΔN 1-56, ΔICL3 260-481			T4L ICL3		LCP	4DAJ, 4U14, 4U15, 4U16

			Class A				
Family	Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystallization Tool Method	PDB IDs
		ΔΝ 1-42, ΔC 397-424, ΔICL3 269-299	A86L, E166A, G215A, L310A, F358A, V360A		T4L ICL3	LCP	4GRV
	neurotensin 1 rat	ΔN 1-49, ΔC 389-424, ΔICL3 280-295	A86L, H103D, H105Y, A161V, R167L, R213L, V234L, I253A, H305R, F358V, S362A			VD	3ZEV
		ΔN 1-49, ΔC 389-424, ΔICL3 273-290	A86L, H103D, H105Y, A161V, R167L, R213L, V234L, I253A, H305R, F358V, S362A			VD	4BUO
		ΔΝ 1-49, ΔC 389-424, ΔICL3 280-295	S83G, A86L, T101R, H103D, H105Y, L119F, M121L, E124D, L125V, R143K, D150E, A161V, R167L, C172R, A177H, M208V, R213L, V234L, V240L, I253A, N262R, K263R, H305R, V313M, C332V, F342A, T354S, F358V, S362A			VD	4BV0
Peptide		ΔN 1-49, ΔC 389-424, ΔICL3 280-295	S83G, A86L, T101R, H103D, H105Y, L119F, M121L, E124D, R143K, D150E, A161V, R167L, R213L, V234L, K235R, V240L, I253A, I260A, N262R, K263R, H305R, C332V, F342A, T354S, F358V, S362A			VD	4BWB
	angiotensin II type 1 human	ΔN 1, 7-16 ΔC 320-359			bRIL N-term	LCP	4YAY
	chemokine CCR5 human	ΔC 320-352, ΔICL3 224-226	C58Y, G163N, A233D, K303E		Rubredoxin ICL3	LCP	4MBS
		ΔC 326-352	L125W		T4L ICL3	LCP	30E6
		ΔC 320-352	L125W		T4L ICL3	LCP	30DU, 30E8
	chemokine CXCR4 human	ΔC 320-352, ΔICL3 229-230	L125W	T240P (uncoup.)	T4L ICL3	LCP	30E9, 30E0
		ΔC 320-352, ΔICL3 229-230	L125W	T240P (uncoup.), D187C (cov. lig.)	T4L ICL3	LCP	4RWS

				Class A			
Family	Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystallization Tool Method	PDB IDs
	δ-opioid mouse	ΔΝ 1-35, ΔC 343-372, ΔICL3 245-250			T4L ICL3	LCP	4EJ4
	δ-opioid human	ΔN 1-35, ΔC 339-372		P37S (Xtal)	bRIL N-term	LCP	4N6H, 4RWA, 4RWD
	к-opioid human	ΔΝ 2-42, ΔC 359-380, ΔICL3 S262		l135L (exp.)	T4L ICL3	LCP	4DJH
Peptide	μ-opioid mouse	ΔΝ 6-51, ΔC 361-398, ΔICL3 264-269			T4L ICL3	LCP	4DKL
	nociceptin/orphanin FQ	ΔN 1-43, ΔC 341-370			bRIL N-term	LCP	4EA3
	PAR1 human	ΔΝ 1-85, ΔC 396-425, ΔICL3 V302		N250G (N-glyc.), N259S (N-glyc.)	T4L ICL3	LCP	3VW7
	orexin 2 human	ΔC 329-386, ΔICL3 255-293			glycogen synthase ICL3	LCP	4S0V

			Class A					
Family	Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystalli _{Tool}	zation Method	PDB IDs
		ΔC 317-412, ΔICL3 209-221			T4L ICL3		LCP	3EML, 3QAK
		ΔC 317-412	L48A, A54L, T65A, Q89A	N154A (N-glyc.)			VD	2YDO, 2YDV
	adenosine A2A human	ΔC 317-412	A54L, T88A, R107A, K122A, L202A, L235A, V239A, S277A	N154A (N-glyc.)			VD	3PWH, 3REY, 3RFM, 3UZA, 3UZC
Nucleotide – like		ΔC 317-412		N154Q (N-glyc.)		Fab2838	VD	3VG9
		ΔC 317-412, ΔICL3 210-217			bRIL ICL3		LCP	4EIY
	purinergic P2Y1 human	ΔICL3 248-252	D320N		rubredoxin ICL3		LCP	4XNV, 4XNW
	purinergic P2Y12 human		D294N		bRIL ICL3		LCP	4NTJ, 4PXZ, 4PY0
	sphingosine-1- phosphate human	ΔC 327-382, ΔICL3 232-244			T4L ICL3		LCP	3V2W, 3V2Y
Lipid	GPR40/FFAR1 Human	ΔICL3 211-212	L42A, F88A, G103A, Y202F		T4L ICL3		LCP	4PHU
Сірій	lysophosphatidic	ΔC 326-364			bRIL ICL3		LCP	4Z34, 4Z35
	acid 1	ΔC 326-364		D204C, V282C (S-S)	bRIL ICL3		LCP	4Z36

				Class A				
Family	Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystalliz Tool	zation Method	PDB IDs
							VD	1F88, 1HZX, 1L9H, 1U19, 1GZM, 2PED, 2G87, 2HPY, 3OAX
	WT					Gta peptide	VD	3PQR, 3PXO, 4J4Q
						ArrFL-1 peptide	VD	4PFX
	stabilized		N2C, D282C (S-S)				VD	2J4Y
Rhodopsin	constitutively active mutants		N2C, D282C (S-S)	E113Q (CAM)		Gta peptide	VD	2X72
bovine			N2C, D282C (S-S)	M257Y (CAM)		Gta peptide	VD	4A4M
	disasso mutants		N2C, D282C (S-S)	G90D (CAM)			VD	4BEZ
	disease mutants		N2C, D282C (S-S)	G90D (CAM)		Gta peptide	VD	4BEY
	opsin (apo)						VD	3CAP
	opsin (apo)					Gta peptide	VD	3DQB
Rhodopsin squid	squid						VD	2ZIY, 2Z73, 3AYN, 3AYM

NOTE: rhodopsin structures of poor resolution (> 3.5 Å; 2l35, 2l36, 2i37), and those obtained through reinterpretation of published data (3C9L, 3C9M) are not included in the table.

		Class B				
Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystallization Tool Method	PDB IDs
glucagon human	ΔN 1-122, ΔC 433-477			bRIL N- term	LCP	4L6R
corticotropin-releasing factor 1	ΔN 1-103, ΔC 374-444, ΔICL2 221-223	V120A, L144A, W156A, S160A, K228A, F260A, I277A, Y309A, F330A, S349A, Y363A		T4L ICL2	LCP	4K5Y
		Class C				
Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystallization Tool Method	PDB IDs
metabotropic glutamate type 1 human	ΔN 1-580, ΔC 861-1194			bRIL N- term	LCP	40R2
metabotropic glutamate type 5 human	ΔN 2-568, ΔC 837-1153	E579A, N667Y, I669A, G675M, T742A, S753A		T4L ICL2	LCP	4009
		Smoothened				
Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystallization Tool Method	PDB IDs
	ΔN 1-189, ΔC 556-787			bRIL N- term	LCP	4JKV, 4N4W
smootnened human	ΔN 1-189, ΔC 556-787, ΔICL3 434-440			bRIL ICL3	LCP	409R, 4QIM, 4QIN

		Viral GPCRs					
Receptor	Truncation	Stabilizing Mutations	Other Mutations	Chimera	Crystall _{Tool}	ization Method	PDB IDs
chemokine US28						LCP	4XT3
human cytomegalovirus	ΔN 1-9, ΔC 310-354				Nb7	LCP	4XT1

Supplementary Table 2. Ligand and mutagenesis data for selected GPCRs. Ligand data include the number of ligands found in the ChEMBLdb for each receptor (and how many of those are similar to the co-crystallized ligands). Mutation data include the number of ligands used in mutagenesis studies, the number of mutants and positions mutated, and the combination of mutants and ligands. See the footnotes for details.

	L	igand data		Mutagenesis data			
GPCR	chemical structure ^a	name ^b : PDBid	# total ^c [# similar ^d]	# of ligands in mutagenesis studies [# of protein ligands] ^e	#mutants ^f [positions ^g]	#mutant- ligand comb. ^h	
		Aminergic rece	eptors				
β1AR	$R_1 \sim H_1 \sim H_2$ $R_4 \to H_2$ $H_1 \sim H_2$ $H_2 \to H_2$ H_2	isoproterenol: 2Y03 ¹ salbutamol: 2Y04 ¹ dobutamine: 2Y00/2Y01 ¹ carmoterol: 2Y02 ¹			33 [27]	149²	
	$\begin{array}{c} R_{2} \xrightarrow{R_{3}} R_{4} \\ R_{1} \xrightarrow{N} OH \end{array}$	Carazolol: 2YCW ³ Carvedilol: 4AMJ ⁴ Bucindolol: 4AMI ⁴ <u>Cyanopindolol</u> : 2VT4 ⁵ / 2YCX ³ /2YCY ³ /4BVN ⁵ <u>I-cyanopindolol:</u> 2YCZ	1191 [106]	19			
	HN N-R	arylpiperazine 19: 3ZPQ ⁶ arylpiperazine 20: 3ZPR ⁶					
	$R_1 \sim N$ H R_2 R_4 OH	epinephrine: 4LDO ⁷ hydrox.bnz.isopr.:4LDL ⁷ BI-167107: 3P0G ⁸ /3SN6 ⁹ /4LDE ⁷ FAUC50: 3PDS 4QKS ¹⁰					
β₂AR	$\begin{array}{c} R_{3} \\ R_{2} \\ R_{1} \\ R_{1} \\ H \\ OH \end{array} OH$	alprenolol: 3NYA ¹¹ 1352 carazolol: 2RH1 ¹² /4GBR [187] VS hit: 3NY9 ¹¹ [187] ICI-118,551: 3NY8 ¹¹ [187]		39	171 [91]	298²	
		timolol: 3D4S ¹³					
D₃R		eticlopride: 3PBL ¹⁴	2668 [18]	31	20 [18]	144²	
M ₂		(R)-3-quinuclidinyl benzilate: 4MQS ¹⁵	1546				
		LY2119620: 4MQT ¹⁶	[43]	38	41 [32] ²	2072	
		iperoxo: 4MQT ¹⁶					

M ₃		tiotropium: 4DAJ ¹⁷ / 4U14 ¹⁸ /4U15 ¹⁸ /4U16 ¹⁸	1385 [15]	24	68 [55]	224²
H₁R	-N	doxepin : 3RZE ¹⁹	1201 [5]	31	28 [16]	238²
5HT _{1B}		ergotamine: 4IAR ^{20,21} dihydroergotamine: 4IAQ ^{20,21}	1040 [2/253]	18	37 [23]	124 ²¹⁻²³
5HT _{2B}		ergotamine: 4IB4 ^{20,21}	1104 [11/64]☆	6	20 [20]	63 ²¹⁻²³
		Chemokine rec	eptors			
CCR5		Maraviroc: 4MBS ²⁴	1793 [96]	26 [15]	148 [103]	1048 ^{25,26}
CXCR4		1T1t: 30DU ²⁴	166 [18]	35 [19]	112 [86]	583 ^{25,27}
	Peptide ^a	30E8/30E9 ²⁸	-			
	Chemokine	VIVIIE-II. 40.000		1		

	Opioid receptors											
	HO N HO	naltrindole: 4EJ4 ³¹ /4N6H ³²	2461									
OPRD		PRD_001256: 4RWA/4RWD ³³	[333]	44	67 [45]	340 ^{20,02}						
OPRM		β -funaltrexamine: 4DKL ³⁴	2678 [198]	35	35 [25]	133 ²³						
OPRK		JDTic: 4DJH ³⁵	2755 [37]	26	45 [37]	119 ^{23,35}						
OPRX		<u>NFQ</u> : 4EA3 ³⁶	1078 [20]	25	12 [12]	48 ^{23,36}						
		Adenosine rec	eptors									
	$ \begin{array}{c} R_1 \\ NH \\ N_2 \\ N_1 \\ HO \\ HO \\ $	<u>Adenosine</u> : 2YDO ³⁷ <u>NECA</u> : 2YDV ³⁷ UK-432097: 3QAK ³⁸										
A _{2A} R		ZM241385: 3EML ⁴⁰ /3PWH ⁴¹ /3VG9 ⁴² /3VGA ⁴²	3447	71	48 [32]	473 ³⁹						
A _{2A} R	$ \overset{O}{\underset{\substack{R_1 \\ N} \\ N}} \overset{R_3}{\underset{\substack{N \\ N} \\ N}} \overset{N}{\underset{\substack{N \\ R_2}}} \overset{R_3}{\underset{\substack{N \\ R_4}}} $	XAC: 3REY ⁴¹ caffeine: 3RFM ⁴¹	[556]									
	$ \begin{array}{c} NH_2\\N\overset{H}{\searrow}N\\N\overset{H}{\swarrow}N\\R\end{array} $	<u>1,2,4-triazine</u> 4g: 3UZA ⁴³ <u>1,2,4-triazine 4e</u> : 3UZC ⁴³										

		Purinergic rece	eptors			
PV	$H_{2}N \xrightarrow[N=V]{N=V} O \xrightarrow[V]{O} O O \xrightarrow[V]{O} O \xrightarrow[V]{O} O O O O O O O O O O O O O O O O O O $	2MeSADP: 4PXZ ⁴⁶ 2MeSATP: 4PY0 ⁴⁶	906	2	10 [10]	1 0 ^{39,46,47}
F ₂ I ₁₂		AZD1283: 4NTJ ⁴⁷	[92]	3		12
P_2Y_1		<u>MRS2500</u> : 4XNW ⁴⁸	301	4	50 (04)	
1211		<u>BPTU</u> : 4XNV ⁴⁸	[191]	-	00 [01]	
		Proteinase-activated	d receptors			
PAR1		Vorapaxar: 3VW7 ⁴⁹	574 [236]	1	3 [3]	5 ⁴⁹
		Lipid recept	ors			
S1P1	$HO \underbrace{\overset{OH}{\underset{P}{\overset{I}{}{}{}{}{}{}{\overset$	ML056: 3V2W ⁵⁰ /3V2Y ⁵⁰	1241 [32]	14	53 [27]	115 ^{50,51}
FFAR1		<u>TAK-875</u> : 4PHU ⁴⁴	539 [71]	7	15 [10]	47 ^{44,45}
		Neurotensin rec	ceptors			
NTR1	Peptide ^a	<u>NTS(8-13):</u> 4GRV ⁵⁰ /3ZEV ⁵²	253	7 [3]	56 [50]	131 ²³
		Orexin recep	tors			
OX2R		Suvorexant: 4S0V ⁵³	576 [52]	7 [3]	22 [21]	118

Secretin-like receptors						
CRF₁		<u>СР-376395</u> : 4К5Ү ⁵⁴	1404 [6]	20 [11]	185 [170]	289 ⁵⁴⁻⁵⁶
GCGR	-	4L6R ^{i) 57}	710	6 [5] ⁵⁷	217 [145]	260 ⁵⁵
Metabotropic glutamate receptors						
mGluR1		<u>FITM</u> : 40R2 ^{i 58}	476 [22] ⁱ	12	37 [26]	90 ^{× 59,60}
mGluR5	HO NOO-	mavoglurant: 4009 ^{i 60}	1415 [32] ⁱ	16	70 [33]	253 ^{59,60}
Frizzled receptors						
SMO		LY2940680: 4JKV ⁶¹	355 [32]	16	13 [12]	58 ^{60,62,63}
	М-М М-СОН	<u>ANTA XV</u> : 4QIM ⁶³				
		<u>SAG1.5</u> : 4QIN ⁶³				
		<u>SANT-1</u> : 4N4W ⁶³				
	N H	cyclopamine: 4O9R ⁶³				

^{a)} Conserved scaffolds are shown for ligand series of β_1 , β_2 , 5HT_{1B}, and A2A, while molecular structures of large co-crystallized polypeptide/protein ligands of CXCR4, US28, and NTR1 are not displayed; parts of the ligands with high B-factors are colored red; ^{b)} Co-crystallized ligands that have been investigated in mutation studies are underlined (mutation data extracted from GPCRDB and indicated references);

^{c)} Ligands (60 heavy atoms or lower) extracted from ChEMBLdb with binding affinity (IC₅₀/K_i) or functional potency (IC₅₀/EC₅₀) of at least 10 μM;

^{d)} Number of ligands with ECFP-4 Tanimoto similarity \geq 0.4 to a co-crystallized ligand of the corresponding receptor; ^{e)} Number of unique ligands studied in mutation studies, protein ligands (60 heavy atoms or higher) indicated between brackets;

^{f)} Number of unique mutants investigated in mutation studies;

^{g)} Number of unique residue positions investigated in mutation studies;

^{h)} Number of investigated combinations of mutants and ligands (mutation data extracted from GPCRDB and/or indicated references);

i) Similarity assessment only with co-crystallized ligands in 7TM domain (not ECD).

References

1. Warne, T.; Moukhametzianov, R.; Baker, J. G.; Nehme, R.; Edwards, P. C.; Leslie, A. G.; Schertler, G. F.; Tate, C. G. The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. *Nature* **2011**, 469, 241-4.

2. Kooistra, A. J.; Kuhne, S.; de Esch, I. J. P.; Leurs, R.; de Graaf, C. A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. *Br J Pharmacol* **2013**.

3. Moukhametzianov, R.; Warne, T.; Edwards, P. C.; Serrano-Vega, M. J.; Leslie, A. G.; Tate, C. G.; Schertler, G. F. Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. *Proceedings of the National Academy of Sciences of the United States of America* **2011**, 108, 8228-32.

4. Warne, T.; Edwards, P. C.; Leslie, A. G.; Tate, C. G. Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. *Structure* **2012**, 20, 841-9.

5. Miller-Gallacher, J. L.; Nehme, R.; Warne, T.; Edwards, P. C.; Schertler, G. F.; Leslie, A. G.; Tate, C. G. The 2.1 A Resolution Structure of Cyanopindolol-Bound beta1-Adrenoceptor Identifies an Intramembrane Na+ Ion that Stabilises the Ligand-Free Receptor. *PLoS One* **2014**, 9, e92727.

6. Christopher, J. A.; Brown, J.; Dore, A. S.; Errey, J. C.; Koglin, M.; Marshall, F. H.; Myszka, D. G.; Rich, R. L.; Tate, C. G.; Tehan, B.; Warne, T.; Congreve, M. Biophysical fragment screening of the beta1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. *Journal of Medicinal Chemistry* **2013**, 56, 3446-55.

7. Ring, A. M.; Manglik, A.; Kruse, A. C.; Enos, M. D.; Weis, W. I.; Garcia, K. C.; Kobilka, B. K. Adrenaline-activated structure of beta-adrenoceptor stabilized by an engineered nanobody. *Nature* **2013**.

8. Rasmussen, S. G.; Choi, H. J.; Fung, J. J.; Pardon, E.; Casarosa, P.; Chae, P. S.; Devree, B. T.; Rosenbaum, D. M.; Thian, F. S.; Kobilka, T. S.; Schnapp, A.; Konetzki, I.; Sunahara, R. K.; Gellman, S. H.; Pautsch, A.; Steyaert, J.; Weis, W. I.; Kobilka, B. K. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. *Nature* **2011**, 469, 175-80.

Rasmussen, S. G.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D.; Mathiesen, J. M.; Shah, S. T.; Lyons, J. A.; Caffrey, M.; Gellman, S. H.; Steyaert, J.; Skiniotis, G.; Weis, W. I.; Sunahara, R. K.; Kobilka, B. K. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. *Nature* 2011, 477, 549-55.
 Weichert, D.; Kruse, A. C.; Manglik, A.; Hiller, C.; Zhang, C.; Hubner, H.; Kobilka, B. K.; Gmeiner, P. Covalent agonists for studying G protein-coupled receptor activation. *Proceedings of the National Academy of Sciences of the United States of America* 2014, 111, 10744-8.

11. Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. *Journal of the American Chemical Society* **2010**, 132, 11443-5.

12. Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. High-resolution crystal structure of an engineered human beta2-adrenergic G proteincoupled receptor. *Science* **2007**, 318, 1258-65.

13. Hanson, M. A.; Cherezov, V.; Griffith, M. T.; Roth, C. B.; Jaakola, V. P.; Chien, E. Y.; Velasquez, J.; Kuhn, P.; Stevens, R. C. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. *Structure* **2008**, 16, 897-905.

14. Chien, E. Y.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G. W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. *Science* **2010**, 330, 1091-5.

15. Haga, K.; Kruse, A. C.; Asada, H.; Yurugi-Kobayashi, T.; Shiroishi, M.; Zhang, C.; Weis, W. I.; Okada, T.; Kobilka, B. K.; Haga, T.; Kobayashi, T. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. *Nature* **2012**, 482, 547-51.

16. Kruse, A. C.; Ring, A. M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hubner, H.; Pardon, E.; Valant, C.; Sexton, P. M.; Christopoulos, A.; Felder, C. C.; Gmeiner, P.; Steyaert, J.; Weis, W. I.; Garcia, K. C.; Wess, J.; Kobilka, B. K. Activation and allosteric modulation of a muscarinic acetylcholine receptor. *Nature* **2013**, 504, 101-6.

17. Kruse, A. C.; Hu, J.; Pan, A. C.; Arlow, D. H.; Rosenbaum, D. M.; Rosemond, E.; Green, H. F.; Liu, T.; Chae, P. S.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Wess, J.; Kobilka, B. K. Structure and dynamics of the M3 muscarinic acetylcholine receptor. *Nature* **2012**, 482, 552-6.

18. Thorsen, T. S.; Matt, R.; Weis, W. I.; Kobilka, B. K. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis. *Structure* **2014**, 22, 1657-1664.

19. Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W.; Kobayashi, T.; Stevens, R. C.; Iwata, S. Structure of the human histamine H1 receptor complex with doxepin. *Nature* **2011**, 475, 65-70.

20. Wacker, D.; Wang, C.; Katritch, V.; Han, G. W.; Huang, X. P.; Vardy, E.; McCorvy, J. D.; Jiang, Y.; Chu, M.; Siu, F. Y.; Liu, W.; Xu, H. E.; Cherezov, V.; Roth, B. L.; Stevens, R. C. Structural features for functional selectivity at serotonin receptors. *Science* **2013**, 340, 615-9.

21. Wang, C.; Jiang, Y.; Ma, J.; Wu, H.; Wacker, D.; Katritch, V.; Han, G. W.; Liu, W.; Huang, X. P.; Vardy, E.; McCorvy, J. D.; Gao, X.; Zhou, X. E.; Melcher, K.; Zhang, C.; Bai, F.; Yang, H.; Yang, L.; Jiang, H.; Roth, B. L.; Cherezov, V.; Stevens, R. C.; Xu, H. E. Structural basis for molecular recognition at serotonin receptors. *Science* **2013**, 340, 610-4.

22. Shi, L.; Javitch, J. A. The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. *Annu Rev Pharmacol Toxicol* **2002**, 42, 437-67.

23. Isberg, V.; Vroling, B.; van der Kant, R.; Li, K.; Vriend, G.; Gloriam, D. GPCRDB: an information system for G proteincoupled receptors. *Nucleic Acids Res* **2014**, 42, D422-5. 24. Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G. W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R. C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. *Science* **2013**, 341, 1387-90.

25. Scholten, D. J.; Canals, M.; Maussang, D.; Roumen, L.; Smit, M. J.; Wijtmans, M.; de Graaf, C.; Vischer, H. F.; Leurs, R. Pharmacological modulation of chemokine receptor function. *Br J Pharmacol* **2012**, 165, 1617-43.

26. Garcia-Perez, J.; Rueda, P.; Alcami, J.; Rognan, D.; Arenzana-Seisdedos, F.; Lagane, B.; Kellenberger, E. Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). *J Biol Chem* **2011**, 286, 33409-21.

27. Kufareva, I.; Salanga, C. L.; Handel, T. M. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. *Immunol Cell Biol* **2015**.

28. Wu, B.; Chien, E. Y.; Mol, C. D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F. C.; Hamel, D. J.; Kuhn, P.; Handel, T. M.; Cherezov, V.; Stevens, R. C. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. *Science* **2010**, 330, 1066-71.

29. Qin, L.; Kufareva, I.; Holden, L. G.; Wang, C.; Zheng, Y.; Zhao, C.; Fenalti, G.; Wu, H.; Han, G. W.; Cherezov, V.; Abagyan, R.; Stevens, R. C.; Handel, T. M. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. *Science* **2015**, 347, 1117-22.

30. Burg, J. S.; Ingram, J. R.; Venkatakrishnan, A. J.; Jude, K. M.; Dukkipati, A.; Feinberg, E. N.; Angelini, A.; Waghray, D.; Dror, R. O.; Ploegh, H. L.; Garcia, K. C. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. *Science* **2015**, 347, 1113-7.

31. Granier, S.; Manglik, A.; Kruse, A. C.; Kobilka, T. S.; Thian, F. S.; Weis, W. I.; Kobilka, B. K. Structure of the deltaopioid receptor bound to naltrindole. *Nature* **2012**, 485, 400-4.

32. Fenalti, G.; Giguere, P. M.; Katritch, V.; Huang, X. P.; Thompson, A. A.; Cherezov, V.; Roth, B. L.; Stevens, R. C. Molecular control of delta-opioid receptor signalling. *Nature* **2014**, 506, 191-6.

33. Fenalti, G.; Zatsepin, N. A.; Betti, C.; Giguere, P.; Han, G. W.; Ishchenko, A.; Liu, W.; Guillemyn, K.; Zhang, H.; James, D.; Wang, D.; Weierstall, U.; Spence, J. C.; Boutet, S.; Messerschmidt, M.; Williams, G. J.; Gati, C.; Yefanov, O. M.; White, T. A.; Oberthuer, D.; Metz, M.; Yoon, C. H.; Barty, A.; Chapman, H. N.; Basu, S.; Coe, J.; Conrad, C. E.; Fromme, R.; Fromme, P.; Tourwe, D.; Schiller, P. W.; Roth, B. L.; Ballet, S.; Katritch, V.; Stevens, R. C.; Cherezov, V. Structural basis for bifunctional peptide recognition at human delta-opioid receptor. *Nat Struct Mol Biol* **2015**, *2*2, 265-8.

Manglik, A.; Kruse, A. C.; Kobilka, T. S.; Thian, F. S.; Mathiesen, J. M.; Sunahara, R. K.; Pardo, L.; Weis, W. I.; Kobilka, B. K.; Granier, S. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. *Nature* 2012, 485, 321-6.
Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G. W.; Vardy, E.; Liu, W.; Thompson, A. A.; Huang, X. P.; Carroll, F. I.; Mascarella, S. W.; Westkaemper, R. B.; Mosier, P. D.; Roth, B. L.; Cherezov, V.; Stevens, R. C. Structure of the human kappa-opioid receptor in complex with JDTic. *Nature* 2012, 485, 327-32.

36. Thompson, A. A.; Liu, W.; Chun, E.; Katritch, V.; Wu, H.; Vardy, E.; Huang, X. P.; Trapella, C.; Guerrini, R.; Calo, G.; Roth, B. L.; Cherezov, V.; Stevens, R. C. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. *Nature* **2012**, 485, 395-9.

37. Lebon, G.; Warne, T.; Edwards, P. C.; Bennett, K.; Langmead, C. J.; Leslie, A. G.; Tate, C. G. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. *Nature* **2011**, 474, 521-5.

38. Xu, F.; Wu, H.; Katritch, V.; Han, G. W.; Jacobson, K. A.; Gao, Z. G.; Cherezov, V.; Stevens, R. C. Structure of an agonist-bound human A2A adenosine receptor. *Science* **2011**, 332, 322-7.

39. Jacobson, K. A.; Costanzi, S.; Deflorian, F. Probing GPCR structure: adenosine and P2Y nucleotide receptors. *Methods Enzymol* **2013**, 520, 199-217.

 Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y.; Lane, J. R.; Ijzerman, A. P.; Stevens, R. C. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. *Science* 2008, 322, 1211-7.
 Dore, A. S.; Robertson, N.; Errey, J. C.; Ng, I.; Hollenstein, K.; Tehan, B.; Hurrell, E.; Bennett, K.; Congreve, M.;

Magnani, F.; Tate, C. G.; Weir, M.; Marshall, F. H. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. *Structure* **2011**, 19, 1283-93.

42. Hino, T.; Arakawa, T.; Iwanari, H.; Yurugi-Kobayashi, T.; Ikeda-Suno, C.; Nakada-Nakura, Y.; Kusano-Arai, O.; Weyand, S.; Shimamura, T.; Nomura, N.; Cameron, A. D.; Kobayashi, T.; Hamakubo, T.; Iwata, S.; Murata, T. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. *Nature* **2012**, 482, 237-40.

43. Congreve, M.; Andrews, S. P.; Dore, A. S.; Hollenstein, K.; Hurrell, E.; Langmead, C. J.; Mason, J. S.; Ng, I. W.; Tehan, B.; Zhukov, A.; Weir, M.; Marshall, F. H. Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. *J Med Chem* **2012**, 55, 1898-903.

44. Srivastava, A.; Yano, J.; Hirozane, Y.; Kefala, G.; Gruswitz, F.; Snell, G.; Lane, W.; Ivetac, A.; Aertgeerts, K.; Nguyen, J.; Jennings, A.; Okada, K. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. *Nature* **2014**, 513, 124-7.

Tikhonova, I. G.; Sum, C. S.; Neumann, S.; Engel, S.; Raaka, B. M.; Costanzi, S.; Gershengorn, M. C. Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. *J Med Chem* 2008, 51, 625-33.
Zhang, J.; Zhang, K.; Gao, Z. G.; Paoletta, S.; Zhang, D.; Han, G. W.; Li, T.; Ma, L.; Zhang, W.; Muller, C. E.; Yang, H.; Jiang, H.; Cherezov, V.; Katritch, V.; Jacobson, K. A.; Stevens, R. C.; Wu, B.; Zhao, Q. Agonist-bound structure of the human P2Y12 receptor. *Nature* 2014, 509, 119-22.

47. Zhang, K.; Zhang, J.; Gao, Z. G.; Zhang, D.; Zhu, L.; Han, G. W.; Moss, S. M.; Paoletta, S.; Kiselev, E.; Lu, W.; Fenalti, G.; Zhang, W.; Muller, C. E.; Yang, H.; Jiang, H.; Cherezov, V.; Katritch, V.; Jacobson, K. A.; Stevens, R. C.; Wu, B.; Zhao, Q. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. *Nature* **2014**, 509, 115-8.

48. Zhang, D.; Gao, Z. G.; Zhang, K.; Kiselev, E.; Crane, S.; Wang, J.; Paoletta, S.; Yi, C.; Ma, L.; Zhang, W.; Han, G. W.; Liu, H.; Cherezov, V.; Katritch, V.; Jiang, H.; Stevens, R. C.; Jacobson, K. A.; Zhao, Q.; Wu, B. Two disparate ligand-binding sites in the human P2Y receptor. *Nature* **2015**.

49. Zhang, C.; Srinivasan, Y.; Arlow, D. H.; Fung, J. J.; Palmer, D.; Zheng, Y.; Green, H. F.; Pandey, A.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Coughlin, S. R.; Kobilka, B. K. High-resolution crystal structure of human protease-activated receptor 1. *Nature* **2012**, 492, 387-92.

50. Hanson, M. A.; Roth, C. B.; Jo, E.; Griffith, M. T.; Scott, F. L.; Reinhart, G.; Desale, H.; Clemons, B.; Cahalan, S. M.; Schuerer, S. C.; Sanna, M. G.; Han, G. W.; Kuhn, P.; Rosen, H.; Stevens, R. C. Crystal structure of a lipid G protein-coupled receptor. *Science* **2012**, 335, 851-5.

51. Parrill, A. L.; Tigyi, G. Integrating the puzzle pieces: the current atomistic picture of phospholipid-G protein coupled receptor interactions. *Biochim Biophys Acta* **2013**, 1831, 2-12.

52. Egloff, P.; Hillenbrand, M.; Klenk, C.; Batyuk, A.; Heine, P.; Balada, S.; Schlinkmann, K. M.; Scott, D. J.; Schutz, M.; Pluckthun, A. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. *Proc Natl Acad Sci U S A* **2014**, 111, E655-62.

53. Yin, J.; Mobarec, J. C.; Kolb, P.; Rosenbaum, D. M. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. *Nature* **2015**, 519, 247-50.

54. Hollenstein, K.; Kean, J.; Bortolato, A.; Cheng, R. K.; Dore, A. S.; Jazayeri, A.; Cooke, R. M.; Weir, M.; Marshall, F. H. Structure of class B GPCR corticotropin-releasing factor receptor 1. *Nature* **2013**, 499, 438-43.

55. Hollenstein, K.; de Graaf, C.; Bortolato, A.; Wang, M. W.; Marshall, F. H.; Stevens, R. C. Insights into the structure of class B GPCRs. *Trends Pharmacol Sci* **2014**, 35, 12-22.

56. Coin, I.; Katritch, V.; Sun, T.; Xiang, Z.; Siu, F. Y.; Beyermann, M.; Stevens, R. C.; Wang, L. Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. *Cell* **2013**, 155, 1258-69.

57. Siu, F. Y.; He, M.; de Graaf, C.; Han, G. W.; Yang, D.; Zhang, Z.; Zhou, C.; Xu, Q.; Wacker, D.; Joseph, J. S.; Liu, W.; Lau, J.; Cherezov, V.; Katritch, V.; Wang, M. W.; Stevens, R. C. Structure of the human glucagon class B G-protein-coupled receptor. *Nature* **2013**, 499, 444-9.

58. Dore, A. S.; Okrasa, K.; Patel, J. C.; Serrano-Vega, M.; Bennett, K.; Cooke, R. M.; Errey, J. C.; Jazayeri, A.; Khan, S.; Tehan, B.; Weir, M.; Wiggin, G. R.; Marshall, F. H. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. *Nature* **2014**, 511, 557-62.

59. Gregory, K. J.; Conn, P. J. Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation. *Mol Pharmacol* **2015**.

60. Wu, H.; Wang, C.; Gregory, K. J.; Han, G. W.; Cho, H. P.; Xia, Y.; Niswender, C. M.; Katritch, V.; Meiler, J.; Cherezov, V.; Conn, P. J.; Stevens, R. C. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. *Science* **2014**, 344, 58-64.

61. Wang, C.; Wu, H.; Katritch, V.; Han, G. W.; Huang, X. P.; Liu, W.; Siu, F. Y.; Roth, B. L.; Cherezov, V.; Stevens, R. C. Structure of the human smoothened receptor bound to an antitumour agent. *Nature* **2013**, 497, 338-43.

62. Hoch, L.; Faure, H.; Roudaut, H.; Schoenfelder, A.; Mann, A.; Girard, N.; Bihannic, L.; Ayrault, O.; Petricci, E.; Taddei, M.; Rognan, D.; Ruat, M. MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor. *FASEB J* **2015**.

63. Wang, C.; Wu, H.; Evron, T.; Vardy, E.; Han, G. W.; Huang, X. P.; Hufeisen, S. J.; Mangano, T. J.; Urban, D. J.; Katritch, V.; Cherezov, V.; Caron, M. G.; Roth, B. L.; Stevens, R. C. Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. *Nat Commun* **2014**, 5, 4355.

MOL #99663

Supplementary files to generate the images in Figure 3.

3eml_density.pmlPyMOL commands to generate Figure 3, top left panel3eml_lig_density.pmlPyMOL commands to generate Figure 3, bottom left panel4eiy_density.pmlPyMOL commands to generate Figure 3, top right panel4eiy_lig_density.pmlPyMOL commands to generate Figure 3, bottom right panel

In order to run successfully these scripts in PyMOL:

1. Download the files containing the crystallographic structure and the electron density map of each protein. These files can be obtained by navigating, respectively to the Protein Data Bank (PDB) (<u>http://www.pdb.org</u>) and the Electron Density Server (EDS) at Uppsala University (<u>http://eds.bmc.uu.se/eds/</u>), searching for each PDB code (in this case, 3EML and 4EIY), and looking for the 'Download' sections.

In the EDS, in order to generate a 'standard' map for visual inspection of the experimental electron density, download the 2mFo-DFc map in CCP4 format. Once downloaded, rename the files to '3eml_map.ccp4' and '4eiy_map.ccp4'.

These files (3eml.pdb, 3eml_map.ccp4, 4eiy.pdb, 4eiy_map.ccp4) need to be in the same directory where the scripts will be executed.

 Initiate a PyMOL session and move to the directory where the structure and electron density files are located by using the command 'cd' in the command line section of the PyMOL window;
 e.g.

> cd /Users/johndoe/Documents/Structures

(See <u>http://www.pymolwiki.org/index.php/Practical_Pymol_for_Beginners</u> for a basic tutorial on PyMOL).

3. Run the script by typing its name preceded by the symol '@, in the command line section of PyMOL; e.g.

> @3eml_density.pml

These scripts can be opened with any text editor, and modified to obtain different images.

MOL #99663

Supplementary files to generate the images in Figure 4.

3eml_bfactors.pmlPyMOL commands to generate Figure 4, left panel4eiy_bfactors.pmlPyMOL commands to generate Figure 4, right panel

In order to run successfully these scripts in PyMOL:

1. Download the files containing the crystallographic structure of each protein. These files can be obtained by navigating to the Protein Data Bank (PDB) (<u>http://www.pdb.org</u>), searching for each PDB code (in this case, 3EML and 4EIY), and looking for the 'Download' section.

These files (3eml.pdb, 4eiy.pdb) need to be in the same directory where the scripts will be executed.

2. Initiate a PyMOL session and move to the directory where the structure files are located by using the command 'cd' in the command line section of the PyMOL window; e.g.

> cd /Users/johndoe/Documents/Structures

(See <u>http://www.pymolwiki.org/index.php/Practical_Pymol_for_Beginners</u> for a basic tutorial on PyMOL).

3. Run the script by typing its name preceded by the symol '@, in the command line section of PyMOL; e.g.

> @3eml_bfactors.pml

These scripts can be opened with any text editor, and modified to obtain different images.