Article's title: Inhibition of interleukin 10 transcription through the SMAD2/3 signaling pathway by Ca^{2+}-activated K^{+}channel $\mathrm{K}_{\mathrm{Ca}} 3.1$ activation in human T-cell lymphoma HuT-78 cells

Authors: Miki Matsui, Junko Kajikuri, Hiroaki Kito, Kyoko Endo, Yuki Hasegawa, Shinya Murate, Susumu Ohya

Journal title: Molecular Pharmacology (MOL \# 114405)

Supplementary Figure legends

Figure S1. Gene expression of Th1 and Th2 cytokines, CD25, Foxp3, LAG3, and EGR2 in HuT-78 cells and differential levels of IL-10 expression and secretion in HuT-78, Jurkat, Daudi, K562, and THP-1 cells. A: Quantitative real-time PCR assay for IFN- γ, IL-17A, IL-4, IL-5, and IL-13 in HuT-78 cells ($\mathrm{n}=4$). Expression levels were shown as a ratio to ACTB. B: Real-time PCR assay for IL-10 in HuT-78, Jurkat, Daudi, K562, and THP-1 cells ($\mathrm{n}=4$ for each). C: Quantitative detection of IL-10 by ELISA assays in HuT-78, Jurkat, Daudi, K562, and THP-1 cells ($\mathrm{n}=4$ for each). Supernatant samples were collected 24 hr after cultivation. D: Real-time PCR assays for CD25, Foxp3, LAG3, and EGR2 in HuT-78 cells ($\mathrm{n}=4$). Results are expressed as means \pm S.D.

Figure S2. The SKA-31-induced hyperpolarization and current activation in HuT-78 cells in current- and voltage-clamp mode using whole-cell patch clamp recordings (at pCa 6.5). A: The time course of hyperpolarization responses induced by the application of $1 \mu \mathrm{M}$ SKA-31. B: Summarized results of the changes in membrane potential was obtained from ' A ' ($\mathrm{n}=5$ for each). C: Effects of vehicle (black), $1 \mu \mathrm{M}$ SKA-31 (red) and $1 \mu \mathrm{M}$ SKA-31 + $1 \mu \mathrm{M}$ TRAM-34 (blue) on the current density-voltage relationship for voltage ramp-induced currents from -120 to +60 mV in HuT-78 cells. D: Summarized results of $1 \mu \mathrm{M}$ SKA-31-induced outward current density at +60 mV ($\mathrm{n}=7$ for each). Results are expressed as means \pm S.D. ${ }^{*, * *}: P<0.05,0.01$ vs. vehicle control,

Figure S3. Effects of $30 \mathrm{mM} \mathrm{K}{ }^{+}$-containing solution and 1 nM thapsigargin on $\mathrm{K}_{\mathrm{Ca}} 3.1$ activators-induced inhibition of IL-10 transcription in HuT-78 cells. A: The time course of depolarization responses induced by the application of 30 and $140 \mathrm{mM} \mathrm{K}^{+}$-containing solution.

The fluorescent intensity of $\mathrm{DiBAC}_{4}(3)$ before the application of the agents at 0 sec is expressed as 1.0. B: Disappearance of $1 \mu \mathrm{M}$ SKA-31-induced hyperpolarization responses by the application of $30 \mathrm{mM} \mathrm{K}^{+}$-containing solution. Cell numbers used for the experiments are shown in parentheses. C: Quantitative real-time PCR assay for IL-10 in HuT-78 cells treated with vehicle, DCEBIO $(1 \mu \mathrm{M})$, DCEBIO +30 mM K , SKA-31 $(1 \mu \mathrm{M})$, and SKA- $31+30 \mathrm{mM} \mathrm{K}^{+}$ for 6 hr ($\mathrm{n}=4$ for each). D: Real-time PCR assay for IL-10 in HuT-78 cells treated with vehicle, 1 nM thapsigargin (TG), and TG $+10 \mu \mathrm{M} \mathrm{KN}-62$ for 6 hr ($\mathrm{n}=4$ for each). Expression levels were expressed as a ratio to ACTB. Results are expressed as means \pm S.D. ${ }^{* *}: P<0.01$ vs. vehicle control, ${ }^{, \#}: P<0.01$ vs. DCEBIO-treated, ${ }^{\$ \$}: P<0.01$ vs. SKA-31-treated, ${ }^{\text {If }}: P<0.01$ vs. TG-treated.

Figure S4. Time course of decreases in IL-10 transcripts by treatments with Kca3.1 activators in HuT-78 cells. A-C: Quantitative real-time PCR assay for IL-10 in HuT-78 cells treated with vehicle (A), DCEBIO ($1 \mu \mathrm{M}$) (B), and SKA-31 ($1 \mu \mathrm{M}$) (C) for 1, 3, 6, 12, and $24 \mathrm{hr}(\mathrm{n}=4$ for each). Expression levels were expressed as a ratio to ACTB. Results are expressed as means \pm S.D. ${ }^{* *}: P<0.01$ vs. at 0 hr .

Figure S5. Full images of cropped blots in Figure 4 (A) and Figure 7 (A)

Figure S6. Effects of an ATP competitive inhibitor of the TGF- $\beta 1$ receptor (LY364947), NFκB inhibitor (BAY11-7082), mTOR inhibitor (everolimus), AKT inhibitor (AZD5363), and STAT3 inhibitor (5,15-DPP) on expression levels of IL-10 transcripts in HuT-78 cells. A-C: Quantitative real-time PCR assay for IL-10 in HuT-78 cells treated with vehicle, LY364947 (1 $\mu \mathrm{M})(\mathrm{A})$, BAY11-7082 (1 $\mu \mathrm{M})(\mathrm{B})$, everolimus (10 nM) (C), AZD5363 (1 $\mu \mathrm{M})(\mathrm{C})$, and 5,15-

DPP $(20 \mu \mathrm{M})(\mathrm{C})$ for $6 \mathrm{hr}(\mathrm{n}=4$ for each). Expression levels were expressed as a ratio to ACTB. Results are expressed as means \pm S.D. ${ }^{* *}: P<0.01$ vs. vehicle control.

supplementary Fig. S1

A

B

C
D

supplementary Fig. S2

B

C

—— $1 \mu \mathrm{M}$ SKA-31
_ $1 \mu \mathrm{M}$ SKA-31 + $1 \mu \mathrm{M}$ TRAM-34

supplementary Fig. S3

A

C

B

D

supplementary Fig. S4

B. dcebio

C. SKA-31

supplementary Fig. S5

A. full images of cropped blots shown in Figure 4

B. full images of cropped blots shown in Figure 7

supplementary Fig. S6

A

C

