SUPPLEMENTARY DATA

Manuscript Number: MOLPHARM-AR-2022-000568R1

Journal Name: Molecular Pharmacology

Valproic acid-induced upregulation of multidrug efflux transporter ABCG2/BCRP via

PPARα-dependent mechanism in human brain endothelial cells

Samiksha Kukal^{1,2}, Shivangi Bora^{1,3}, Neha Kanojia^{1,2}, Pooja Singh^{1,2}, Priyanka Rani Paul^{1,2}, Chitra Rawat^{1,2}, Shakti Sagar^{1,2}, Naveen Kumar Bhatraju¹, Gurpreet Kaur Grewal⁴, Anju Singh^{5,6}, Shrikant Kukreti⁵, Kapaettu Satyamoorthy⁷, Ritushree Kukreti^{1,2,*}

¹Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi - 110007, India.

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.

³Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi - 110042, India.

⁴Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab - 144402, India.

⁵Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India.

⁶Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi 110007, India.

⁷Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.

*Correspondence:

Ritushree Kukreti, PhD

Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

Phone: 91-11-27662202; Fax: 91-11-27667471; Email: ritushreekukreti@gmail.com; ritus@igib.res.in

Therapeutic plasma concentrations (reference range) of antiepileptic drugs in patients with epilepsy (Johannessen, 2004)

Antiepileptic	Therapeutic plasma	Doses used
drug	concentration range (µM)	in the present study
Phenytoin	40-80	40μΜ, 80μΜ
Carbamazepine	15-45	21μΜ, 42μΜ
Valproic acid	300-600	300µМ, 600µМ
Lamotrigine	10-60	15μΜ, 60μΜ
Topiramate	15-60	15μΜ, 60μΜ
Levetiracetam	35-120	40μΜ, 120μΜ

Sequence of primers used for qPCR

	A. Primer sequences for MDTs and B2M				
Gene	Forward Primer	Reverse Primer			
ABCC1	5'-TGTGTGGGGCAACTGCATCG-3'	5'-GTTGGTTTCCATTTCAGATGACA-3'			
ABCC2	5'-ATATAAGAAGGCATTGACCC-3'	5'-ATCTGTAGAACACTTGACCA-3'			
ABCC4	5'-GAGCTGAGAATGACGCACAG-3'	5'-TACGCTGTGTTCAAAGCCAC-3'			
ABCC5	5'-GGGAGCTCTCAATGGAAGAC-3'	5'-CAGCTCTTCTTGCCACAGTC-3'			
ABCG2	5'- GAAGAGTGGCTTTCTACCTT -3'	5'- GTCCCAGGATGGCGTTGA-3'			
B2M	5'-GGCATTCCTGAAGCTGACAG-3'	5'-TGGATGACGTGAGTAAACCTG-3'			
	B. Primer sequences for mole	cular factor genes			
Gene	Forward Primer	Reverse Primer			
PXR	5'-TGCGAGATCACCCGGAAGAC-3'	5'-ATGGGAGAAGGTAGTGTCAAAGG-3'			
CAR	5'- GTGCTTAGATGCTGGCATGAGGAA-3'	5'-GGCTGGTGATGGATGAACAGATGAG-3'			
AhR	5'-ACATCACCTACGCCAGTCGC-3'	5'-TCTATGCCGCTTGGAAGGAT-3'			
PPARA	5'-CTATCATTTGCTGTGGAGATCG-3'	5'-AAGATATCGTCCGGGTGGTT-3'			
PPARG	5'-AAGGAGAAGCTGTTGGCGGAGA-3'	5'-CAGCCCTGAAAGATGCGGATGG-3'			
NRF2	5'-GAGAGCCCAGTCTTCATTGC-3'	5'-TGCTCAATGTCCTGTTGCAT-3'			
NFKB1	5'-GTGAAGGCCCATCCCATGGT-3'	5'-TGTGACCAACTGAACAATAACC-3'			
RELA	5'-GCAGAAAGAGGACATTGAGGTG-3'	5'-CTGCATGGAGACACGCACAGGAG-3'			
CREB1	5'-ACTGTAACGGTGCCAACTCC-3'	5'-GAATGGTAGTACCCGGCTGA-3'			
COX-2	5'- CCTGTGCCTGATGATTGC -3'	5'-CTGATGCGTGAAGTGCTG-3'			
TP53	5'-TAACAGTTCCTGCATGGGCGGC-3'	5'-AGGACAGGCACAAACACGCACC-3'			
GSK3B	5'-GGTCTATCTTAATCTGGTGCTGG-3'	5'-TGGATATAGGCTAAACTTCGGAAC-3'			
JNK1	5'-TGGACTTGGAGGAGAGAACC-3'	5'-CATTGACAGACGACGATGATG-3'			
cJUN	5'-TTCTATGACGATGCCCTCAACGC-3'	5'-GCTCTGTTTCAGGATCTTGGGGGTTAC-3'			
MAPK1	5'-CGTGTTGCAGATCCAGACCATGAT-3'	5'-TGGACTTGGTGTAGCCCTTGGAA-3'			
МАРКЗ	5'-ACCTGCGACCTTAAGATTTGTGA-3'	5'-AGCCACATACTCCGTCAGGAA-3'			

РІКЗСА	5'-TGGATGCTCTACAGGGCTTT-3'	5'-GTCTGGGTTCTCCCAATTCA-3'		
C. Primer sequences for PPARa target genes				
Gene	Forward Primer	Reverse Primer		
THBD	AGCAAGCCCCACTTATTCCC	GGGTGACTCAGGTGAGTTGG		
PDK4	GAGGTGGTGTTCCCCTGAGAATT	CAAAACCAGCCAAAGGAGCATT		

PXR, pregnane X receptor; CAR, constitutive androstane receptor; AhR, aryl hydrocarbon receptor; PPARA, peroxisome proliferator activated receptor alpha; PPARG, peroxisome proliferator activated receptor gamma; NRF2, nuclear factor, erythroid 2 like 2; NFKB1, nuclear factor kappa B subunit 1; RELA; RELA proto-oncogene, NF-KB Subunit; CREB1, cAMP responsive element binding protein 1; COX-2, cyclooxygenase-2; TP53, tumor protein P53; GSK3B, glycogen synthase kinase 3 beta; JNK1, c-Jun N-terminal kinase-1; cJUN, Jun proto-oncogene, AP-1 transcription factor subunit; MAPK1, mitogen-activated protein kinase 1; MAPK3, mitogen-activated protein kinase 3; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; THBD, thrombomodulin; PDK4, pyruvate dehydrogenase lipoamide kinase isozyme 4

Gene Symbol	Gene Name	Catalog/Assay ID	Company
AhR	Aryl hydrocarbon receptor	4427038/ s1198	Thermofisher
PPARA	Peroxisome proliferator activated receptor alpha	4427037/ s10881	Thermofisher
PPARG	Peroxisome proliferator activated receptor gamma	4427038/ s10886	Thermofisher
NRF2	Nuclear factor, erythroid 2 like 2	4427037/ s9491	Thermofisher
NFKB1	Nuclear factor kappa B subunit 1	4427037/ s9505	Thermofisher
RELA	RELA proto-oncogene, NF-KB Subunit	4427038/ s11914	Thermofisher
CREB1	cAMP responsive element binding protein 1	4427037/ s3489	Thermofisher
COX-2	Cyclooxygenase-2	4427037/ s11472	
p53/TP53	Tumor protein P53	4427038/ s607	Thermofisher
GSK3B	Glycogen synthase kinase 3 beta	4427038/ s6240	Thermofisher
MAPK1	Mitogen-activated protein kinase 1	4427038/ s11137	Thermofisher
МАРКЗ	Mitogen-activated protein kinase 3	4427038/ s11140	Thermofisher
PIK3CA	Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha	4427038/ s10520	Thermofisher
Negative Control No. 1		4390843	Thermofisher
Gene Symbol	Gene Name	Product Number/siRNA ID	Company
JNK1	c-Jun N-terminal kinase-1	NM_002750/ SASI_Hs01_00010441	Sigma-Aldrich
cJUN	Jun proto-oncogene, AP-1 transcription factor subunit	NM_002228/ SASI_Hs02_00333461	Sigma-Aldrich

Company source and assay IDs of the siRNAs used in this study.

Statistical analysis of data

Figure	Comparative groups	Mean difference (95% Confidence Interval of difference)	P value	P value (Statistical test)
	VC vs 300µM	0.00	0.97	0.74
Fig 1		(-0.05, 0.05)		(One-way ANOVA
(ABCC1/	VC vs 600µM	-0.01	0.84	with Tukey test)
B2M)		(-0.06, 0.04)		_
2211)	300µM vs 600µM	0.01	0.73	
		(-0.04, 0.06)		
	VC vs 300µM	-0.03	0.64	0.36
		(-0.12, 0.07)		(One-way ANOVA
Fig. 1	VC vs 600µM	-0.05	0.33	with Tukey test)
(ABCC2/B2M)		(-0.14, 0.05)		
$\mathbf{D}\mathcal{L}\mathbf{W}\mathbf{I}$	300µM vs 600µM	-0.02	0.82	
		(-0.11, 0.08)		
	VC vs 300µM	0.05	0.50	0.15
	, C , S C C C P	(-0.08, 0.18)	0.00	(One-way ANOVA
Fig. 1	VC vs 600µM	0.09	0.13	with Tukey test)
(ABCC4/	•	(-0.03, 0.22)		
B2M)	300µM vs 600µM	0.05	0.54	
		(-0.08, 0.17)		
	VC vs 300µM	-0.02	0 79	0.46
	v C vs 500µm	(-0.09, 0.06)	0.79	(One-way ANOVA with Tukey test)
Fig. 1	VC vs 600µM	0.02	0.79	
(ABCC5/		(-0.06, 0.09)		
B2M)	300µM vs 600µM	0.03	0.43	
		(-0.04, 0.11)		
<u> </u>	VC vs 300µM	-0.23	0.001	< 0.001
		(-0.34, -0.13)		(One-way ANOVA
Fig. 1	VC vs 600µM	-0.38	< 0.001	with Tukey test)
(ABCG2/		(-0.49, -0.28)		•
B2M)	300µM vs 600µM	-0.15	0.01	
		(-0.25, -0.04)		
	VC vs 300 µM (6h)	-0.14	< 0.001	<0.001 (Bv time
Fig. 2		(-0.21, -0.07)		points)
(ABCG2/	VC vs 600 µM (6h)	-0.18	< 0.001	<0.001 (By treatments)
B2M)	• • • •	(-0.25, -0.11)		

	300 µM vs 600 µM (6h)	0.04	0.65	(Two-way ANOVA
	VC vs 300 µM (12h)	-0.20	< 0.001	with Tukey test)
	VC vs 600 µM (12h)	-0.29	< 0.001	
	v e vs 600 µm (121)	(-0.36, -0.22)	<0.001	
	300 µM vs 600 µM (12h)	0.09	0.005	
		(0.02, 0.16)		-
	VC vs 300 µM (24h)	-0.23	< 0.001	
	VC vs 600 µM (24b)	-0.38	<0.001	-
	v e vs 600 µm (2+1)	(-0.45, -0.31)	<0.001	
	300 µM vs 600 µM (24h)	0.15 (0.08, 0.22)	< 0.001	
	VC vs 300 µM (48h)	-0.16	< 0.001	
	-	(-0.23, -0.09)		
	VC vs 600 µM (48h)	-0.24	< 0.001	
	$200 \dots M \dots (48h)$	(-0.31, -0.17)	0.015	-
	500 μm vs 000 μm (48ii)	(0.01, 0.15)	0.015	
			-1	1
	VC vs 300 µM (6h)	-0.20	0.08	<0.001 (By time
	$VC = 600 \mu M (6h)$	(-0.42, 0.03)	0.00	points)
		(-0.02)	0.99	(Two-way ANOVA
	300 μM vs 600 μM (6h)	-0.06	0.10	with Tukey test)
	• • • • • •	(-0.12, 0.01)		
	VC vs 300 µM (12h)	-0.16 (-0.23, -0.10)	< 0.001	
	VC vs 600 µM (12h)	-0.19	< 0.001	
		(-0.26, -0.13)	0.00	-
	300 μM vs 600 μM (12h)	0.03	0.89	
	VC vs 300 µM (24h)	-0.18	<0.001	-
	v e vs 500 µm (2+1)	(-0.24, -0.12)	<0.001	
Fig. 3A	VC vs 600 µM (24h)	-0.21	< 0.001	
(BCRP/HSC)		(-0.28, -0.15)		-
	300 μM vs 600 μM (24h)	0.03	0.80	
	VC = 200 + M (48h)	(-0.03, 0.10)	<0.001	-
	VC VS 500 μW (481)	(-0.30, -0.18)	<0.001	
	VC vs 600 µM (48h)	-0.32	< 0.001	-
		(-0.38, -0.26)		
	300 µM vs 600 µM (48h)	0.08 (0.02, 0.14)	0.004	
	VC vs 300 µM (72h)	-0.18	< 0.001	
	VC vs 600 µM (72h)	-0.27	<0.001	4
	, C 15 000 µ11 (721)	(-0.33, -0.21)		
	300 µM vs 600 µM (72h)	0.09	0.001]
		(0.03, 0.15)		

	VC vs 300 µM (12h)	-0.03	0.98	<0.001 (By time
	VC vs 600 µM (12h)	-0.08	0.06	<0.001 (By treatments) (Two way ANOVA
	300 µM vs 600 µM (12h)	0.05	0.59	with Tukey test)
	VC vs 300 µM (24h)	-0.08	0.048	-
	VC vs 600 µM (24h)	-0.09	0.02	-
Fig. 3C	300 µM vs 600 µM (24h)	0.01	1.00	-
(BCRP activity)	VC vs 300 µM (48h)	-0.10 (-0.17, -0.02)	0.01	-
	VC vs 600 µM (48h)	-0.18	< 0.001	-
	300 µM vs 600 µM (48h)	0.09	0.02	-
	VC vs 300 µM (72h)	-0.11 (-0.19, -0.03)	0.001	-
	VC vs 600 µM (72h)	-0.22 (-0.29, -0.14)	< 0.001	-
	300 µM vs 600 µM (72h)	0.11 (0.03, 0.18)	0.002	
	Baseline vs 20µM	0.02 (0.004, 0.04)	0.02	0.02 (One-way ANOVA
	Baseline vs 40µM	0.01 (-0.01, 0.03)	0.44	with Dunnett test)
	Baseline vs 80µM	0.02 (0.0003, 0.04)	0.047	
Fig. 4A	Baseline vs 160µM	0.02 (0.006, 0.04)	0.015	
(PHT)	Activated vs 20µM	0.01 (-0.04, 0.05)	0.99	0.71 (One-way ANOVA
	Activated vs 40µM	0.02 (-0.03, 0.07)	0.50	with Dunnett test)
	Activated vs 80µM	0.01 (-0.04, 0.06)	0.89	
	Activated vs 160µM	0.006 (-0.04, 0.05)	0.99	
	·			
	Baseline vs 10µM	-0.01 (-0.06, 0.04)	0.93	0.31 (One-way ANOVA
	Baseline vs 20µM	0.02 (-0.04, 0.07)	0.69	with Dunnett test)
Fig. 4B (CBZ)	Baseline vs 40µM	-0.02 (-0.07, 0.03)	0.54	
	Baseline vs 80µM	-0.008 (-0.06, 0.04)	0.94	
	Activated vs 10µM	-0.05 (-0.11, 0.002)	0.06	0.03

	Activated vs 20µM	-0.05	0.08	(One-way ANOVA with Duppett test)
	Activated vs 40µM	-0.05	0.11	
	Activated vs 80µM	-0.07	0.014	-
		(-0.13, -0.02)		
	Baseline vs. 75µM	0.07	0.004	0.002
	Baseline vs. 150µM	(0.03, 0.10)	0.008	(One-way ANOVA with Dunnett test)
		(0.02, 0.09)	0.000	
	Baseline vs. 300µM	0.09 (0.05, 0.13)	0.001	
Eig 4C	Baseline vs. 600µM	0.07	0.004	-
(VPA)	Activated vs. 75µM	-0.03	0.32	0.12
	Activated vs. 150uM	(-0.08, 0.02) -0.02	0.47	(One-way ANOVA with Dunnett test)
		(-0.07, 0.03)	0.00	_
	Activated vs. 300µM	-0.03 (-0.08, 0.02)	0.32	
	Activated vs. 600µM	0.02	0.70	
		(-0.05, 0.07)		
	Baseline vs. 15µM	0.03	0.005	0.001
	Baseline vs. 30uM	(0.01, 0.05)	0.001	(One-way ANOVA with Dunnett test)
		(0.03, 0.06)	0.001	
	Baseline vs. 60µM	0.05 (0.03, 0.07)	< 0.001	
Eig 4D	Baseline vs. 120µM	0.04	0.002	
(LTG)	Activated vs. 15µM	-0.05	0.06	0.03 (One way ANOVA
	Activated vs. 30µM	-0.05	0.08	with Dunnett test)
	Activated vs. 60µM	-0.05	0.10	
	Activated vs. 120µM	-0.07	0.014	-
		(-0.13, -0.02)		
	Baseline vs. 30µM	-0.007	0.89	0.90
	Baseline vs. 60µM	-0.004	0.98	(One-way ANOVA with Dunnett test)
Fig. 4E	Baseline vs. 120µM	(-0.04, 0.04)	0.86	_
(TPM)		(-0.05, 0.03)		
	Activated vs. 15µM	0.006 (-0.02, 0.03)	0.85	0.32 (One-way ANOVA
	Activated vs. 30µM	0.01 (-0.02, 0.04)	0.52	with Dunnett test)

	Activated vs. 60µM	0.02	0.17	
	Activated vs. 120µM	0.007	0.82	
		(-0.02, 0.03)		
	Descline ve 25. M	0.004	0.10	0.40
	Basenne vs. 25µM	(-0.004)	0.10	0.49 (One-way ANOVA
	Baseline vs. 50µM	-0.002	1.00	with Dunnett test)
		(-0.06, 0.06)		····,
	Baseline vs. 100µM	0.02	0.62	
		(-0.04, 0.08)		
	Baseline vs. 200µM	0.02	0.52	
Fig. 4F		(-0.04, 0.08)	0.00	0.00
(LEVI)	Activated vs. 25µM	0.003	0.98	0.38
	Activated vs. 50uM	(-0.03, 0.03)	0.00	(One-way ANOVA with Dunnett test)
	Activated vs. 50µm	(-0.003)	0.90	with Duffielt (est)
	Activated vs 100uM	0.01	0.52	_
		(-0.02, 0.04)	0.02	
	Activated vs. 200µM	0.02	0.25	-
		(-0.01, 0.05)		
	VC vs 40uM	0.06	< 0.001	< 0.001
		(0.03, 0.09)		(One-way ANOVA
Fig. 5A	VC vs 80µM	0.10	< 0.001	with Dunnett test)
(PHT)		(0.07, 0.12)		
	VC vs KO143	0.20	< 0.001	
		(0.18, 0.23)		
	VC vs 300µM	0.15	< 0.001	< 0.001
		(0.10, 0.20)		(One-way ANOVA
Fig. 5B	VC vs 600µM	0.20	< 0.001	with Dunnett test)
(VPA)		(0.15, 0.25)		_
	VC vs KO143	0.20	< 0.001	
		(0.15, 0.25)		
	VC vs 15µM	0.20	< 0.001	< 0.001
		(0.15, 0.26)		(One-way ANOVA
Fig. 5C	VC vs 60µM	0.19	< 0.001	with Dunnett test)
(LTG)		(0.13, 0.24		_
	VC vs KO143	0.20	< 0.001	
		(0.15, 0.26)		
				[
	SCR, VC vs SCR, VPA	1.27	< 0.001	<0.001 (By siRNA)
Fig. 6B	SCD VC ve aiDDAD - VC	(U.//, I.//)	0.66	<pre>(U.UU1 (By drug treatment)</pre>
(ABCG2/	SUK, VU VS SIPPAKA, VU	-0.19	0.66	(Two-way A NOVA)
B2M)	SCR. VC vs siPPARa VPA	0.19	0.65	with Tukev test)
		(-0.32, 0.69)	0.05	

r				
	SCR, VPA vs siPPARa, VC	1.46 (0.95, 1.96)	< 0.001	
	SCR, VPA vs siPPARα, VPA	-1.08	0.001	-
	siDDADa VC vs $siDDADa$	(-1.39, -0.38)	0.16	
	VPA	(-0.13, 0.88)	0.10	
	VIII	(0.15, 0.00)		
	SCR, VC vs SCR, VPA	1.16	< 0.001	<0.001 (By siRNA)
		(0.79, 1.52)		<0.001 (By drug
	SCR, VC vs siPPARa, VC	-0.06	0.94	treatment)
		(-0.43, 0.30)		(Two-way ANOVA
Eig (D	SCR, VC vs siPPARa, VPA	0.22	0.28	with Tukey test)
(PCPD/		(-0.14, 0.59)		
(BCRF)	SCR, VPA vs siPPARa, VC	1.22	< 0.001	
IISC)		(0.85, 1.59)		
	SCR, VPA vs siPPARa, VPA	-0.93	< 0.001	
		(-1.30, -0.57)		
	siPPARa, VC vs siPPARa,	0.29	0.13	
	VPA	(-0.08, 0.65)		
	SCD VC SCD VDA	0.57	-0.001	$(0.001 (D_{-1}; DNA))$
	SCR, VC VS SCR, VPA	(0.57)	<0.001	< 0.001 (By SIRNA)
	SCD VC vs siDDADs VC	(0.47, 0.08)	0.04	<0.001 (By drug
	SCR, VC VS SIPPARA, VC	-0.11	0.04	(Two way ANOVA)
	SCD VC vs siDDADs VDA	(-0.21, -0.00)	0.84	(Iwo-way ANOVA with Tukov tost)
Fig. 6E	SCR, VC VS SIFFARU, VFA	(0.13, 0.08)	0.04	with Tukey test)
(BCRP	SCR VPA vs siPPARa VC	(-0.13, 0.08)	<0.001	-
activity)	SCR, VIA VS SII I ARU, VC	(0.58, 0.78)	<0.001	
	SCR VPA vs siPPARa VPA	-0.60	< 0.001	-
		(-0.70, -0.50)	<0.001	
	siPPARa, VC vs siPPARa,	0.08	0.14	
	VPA	(-0.02, 0.18)		
	VC vs VPA	0.36	< 0.001	0.003 (By -/+MK886)
		(0.20, 0.52)		<0.001 (By drug
	VC vs VC+8µMMK886	-0.11	0.21	treatment)
		(-0.27, 0.05)		(Two-way ANOVA
Fig 7B	VC vs VPA+8µMMK886	-0.05	0.77	with Tukey test)
(BCRP/		(-0.21, 0.11)		-
HSC)	VPA vs VC+8µMMK886	0.46	< 0.001	
,		(0.30, 0.62)	0.001	-
	VPA vs VPA+8µMMK886	-0.40	<0.001	
		(-0.56, -0.24)	0.65	-
	$VC+\delta\mu$ WINK $\delta\delta\delta$ VS	(0.00)	0.65	
	νΡΑ+ομινικικόδο	(-0.10, 0.22)		
		-0.22	< 0.001	< 0.001
Fig. 7C	VC vs VPA	(-0.31, -0.12)		(One-way ANOVA
(BCRP		0.08	0.11	with Tukey test)
activity)	VC vs VC+8µMMK886	(-0.02, 0.17)		

	VC vs VPA+8µMMK886	0.02	0.94	
		(-0.08, 0.11)	<0.001	-
	VPA vs VC+8µMMK886	(0.29)	<0.001	
		0.23	<0.001	-
	VPA vs VPA+8µMMK886	(0.14, 0.33)	<0.001	
	VC+8µMMK886 vs	-0.06	0.24	
	VPA+8uMMK886	(-0.15, 0.03)	0.2.	
	VC vs 600 µM (1h)	-0.03	0.80	<0.001 (By time
		(-0.10, 0.03)		points)
	VC vs 600 µM (3h)	-0.16	< 0.001	<0.001 (By treatments)
		(-0.22, -0.09)	0.001	(Two-way ANOVA
Fig. 8A	VC vs 600 μ M (6h)	-0.30	<0.001	with Tukey test)
(PPARa/	VC = (00 + M(12b))	(-0.37, -0.24)	<0.001	-
B2M)	VC VS 600 μM (12n)	-0.24	<0.001	
	$VC = 600 \mu M (24h)$	(-0.31, -0.18)	<0.001	
	VC VS 000 μWI (24II)	(-0.23)	<0.001	
	VC vs 600 µM (48h)	-0.07	0.03	-
	v e vs 000 µm (401)	(-0.14, -0.004)	0.05	
		(011 !; 0100 !)	L	
	VC vs 600 µM (1h)	-0.01	1.00	<0.001 (By time
		(-0.10, 0.07)		points)
	VC vs 600 µM (3h)	-0.21	< 0.001	<0.001 (By treatments)
Fig. 8B		(-0.29, -0.13)		(Two-way ANOVA
(PPARa/	VC vs 600 µM (6h)	-0.14	< 0.001	with Tukey test)
HSC)		(-0.22, -0.05)	0.77	_
	VC vs 600 µM (12h)	-0.05	0.57	
	$\mathbf{M}\mathbf{C} = \mathbf{C} (0 + \mathbf{M} (24\mathbf{b}))$	(-0.13, 0.03)	1.00	-
	$VC VS 600 \mu W (24n)$	(0.01)	1.00	
		(-0.07, 0.09)		
		-0.22	< 0.001	(Unpaired t-test)
E's OD	VC vs 600 μ M (24h) – PDK4	(-0.25, -0.19)		
F1g. 8D	VC vs 600 µM (24h) –	-0.27	< 0.001	
	THBD	(-0.32, -0.22)		
	1	0.10	0.001	0.001
	Oh cytosolic vs 3h cytosolic	0.10	<0.001	<0.001
		(0.05, 0.15)	0.04	(One-way ANOVA
	Oh cytosolic vs 6h cytosolic	0.06	0.04	with Tukey test)
		(0.002, 0.11)	0.12	-
	3h cytosolic vs 6h cytosolic	(-0.10, 0.01)	0.12	
Fig. 9B		-0.14	< 0.001	-
	Oh nuclear vs 3h nuclear	(-0.190.08)	\0.001	
		-0.11	< 0.001	1
	Oh nuclear vs 6h nuclear	(-0.16, 0.06)		
		0.03	0.67	1
	3n nuclear vs 6h nuclear	(-0.03, 0.08)		

	2h autocolio ya 2h muoloon	-0.24	< 0.001	
	Sh cytosone vs Sh huclear	(-0.29, -0.18)		
	Charteselie us Chanalson	-0.17	< 0.001	
	on cytosolic vs on nuclear	(-0.22, -0.11)		
		Γ		
	Oh vs 3h	-0.13	0.001	0.001
		(-0.19, -0.06)		(One-way ANOVA
Fig 0D	Ob ve 6b	-0.12	0.002	with Tukey test)
Fig. 9D	UN VS ON	(-0.18, -0.05)		
	3h vs 6h	0.01	0.95	
		(-0.06, 0.07)		
		-0.20	0.30	(Unpaired t-test)
	VC VS VPA (IgG)	(-0.67, 0.27)		
E' 104		-0.82	< 0.001	
F1g. 10A	VC VS VPA (PPAR α) – 3n	(-1.06, -0.58)		
		-0.62	< 0.001	1
	VC vs VPA (PPAR α) – 6h	(-0.84, -0.40)		
	VC vg VDA (pCL 2 control)	-0.01	0.44	(Unpaired t-test)
$E \approx 10C$	VC VS VPA (pOL2-control)	(-0.05, 0.02)		
Fig. 10C	VC vs VPA (pGL2-prom-	-0.17	< 0.001	(Unpaired t-test)
	ABCG2)	(-0.20, -0.13)		

Supplemental Data

Supplemental Fig. 1. Effect of AEDs on hCMEC/D3 cell viability. Cells were treated with different doses of (A) phenytoin (PHT), (B) carbamazepine (CBZ), (C) valproic acid (VPA), (D) lamotrigine (LTG), (E) topiramate (TPM) and (F) levetiracetam (LEVI) for 72h. After treatment, cells were assessed for % viability using MTT assay. Data is the mean \pm S.D. of 4 independent experiments. **p<0.01, compared to VC (One-way ANOVA with Dunnett's post hoc test).

Supplemental Fig. 2. Effect of PHT, CBZ, LTG, TPM and LEVI on mRNA expression of MDTs in hCMEC/D3 cells. RT-qPCR analysis of ABCC1, ABCC2, ABCC4, ABCC5 and ABCG2 mRNA expression in hCMEC/D3 cells treated with (A) PHT (40μ M, 80μ M), (B) CBZ (21μ M, 42μ M), (C) LTG (15μ M, 60μ M), (D) TPM (15μ M, 60μ M) and (E) LEVI (40μ M, 120μ M) for 24h. The changes in mRNA levels of target genes were normalized with *B2M* and expressed as normalized fold change over VC (0.1% DMSO for PHT, CBZ, LTG and TPM; water for LEVI). The data is the mean \pm S.D. of 3 independent experiments.

Supplemental Fig. 3. siRNA validation data for 14 molecular factors at mRNA level. hCMEC/D3 cells were transiently transfected with siRNA specific to (A) AhR, (B) PPARG, (C) CREB1, (D) NRF2, (E) NFKB1, (F) RELA, (G) PIK3CA, (H) p53, (I) COX-2, (J) GSK3B, (K) JNK1, (L) cJUN, (M) MAPK1, (N) MAPK3, or the non-targeting control (scramble, SCR). Subsequently, cells were treated with VC (0.1% DMSO) or VPA (600μ M) for 24h. RT-qPCR analysis was done to check the knockdown of each factor in VC-treated as well as VPA-treated group. The changes in mRNA level of each gene were normalized with *B2M*. The data is the mean ± S.D. of 3 independent experiments. **P < 0.01, VC (SCR vs. siRNA); #P<0.01 VPA (SCR vs. siRNA) (unpaired t-test).

Supplemental Fig. 4. Effect of silencing of molecular factors on VPA-induced ABCG2 mRNA. Expression of the respective factors (A-N) was silenced by transient transfection of gene-specific siRNA in hCMEC/D3 cells. Then, the cells were treated with VC (0.1% DMSO) or VPA (600 μ M) for 24h and RT-qPCR analysis was done to check mRNA expression levels of ABCG2. Scramble (SCR) was used as non-targeting control. The changes in mRNA level of ABCG2 was normalized with *B2M*. The data is the mean \pm S.D. of 3 independent experiments. **P < 0.01, SCR (VC vs. VPA) and siRNA (VC vs. VPA) (Two-way ANOVA with Tukey's post hoc test).

Supplemental Fig. 5. Effect of MK886 on hCMEC/D3 cell viability. Cells were treated with different doses of MK886 for 48h. After treatment, cells were assessed for % viability using MTT assay. Data is the mean \pm S.D. of 4 independent experiments. **p<0.01, compared to VC (0.1% DMSO) (One-way ANOVA with Dunnett's post hoc test).

Supplemental Fig. 6. Effect of known PPAR α agonist on ABCG2 mRNA in hCMEC/D3 cells. RT-qPCR analysis of ABCG2 mRNA expression in hCMEC/D3 cells treated with 100 μ M clofibrate and 100nM GW7647 for 24h. The changes in the mRNA level were normalized with *B2M* and expressed as normalized fold change over VC (0.1% DMSO). The data is the mean \pm S.D. of 3 independent experiments. **p<0.01, compared to VC (unpaired t-test).

Supplemental Fig. 7. Binding of VPA to PPAR α LBD in a TR-FRET competitive binding assay. GW7647 was used as a known PPAR α agonist. Data is the mean ± S.D. of 2 independent experiments. *p < 0.05, **p < 0.01 compared to solvent control (1% DMSO, 0% displacement); One-way ANOVA with Dunnett's post hoc test.

References

Johannessen SI (2004) Therapeutic drug monitoring of antiepileptic drugs, in *Drug Monitoring and Clinical Chemistry* (Hempel G ed) pp 221-253, Elsevier: Amsterdam, The Netherlands.