Skip to main content

DNA Methyltransferases, DNA Damage Repair, and Cancer

  • Chapter
  • First Online:
Epigenetic Alterations in Oncogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((volume 754))

Abstract

The maintenance DNA methyltransferase (DNMT) 1 and the de novo methyltransferases DNMT3A and DNMT3B are all essential for mammalian development. DNA methylation, catalyzed by the DNMTs, plays an important role in maintaining genome stability. Aberrant expression of DNMTs and disruption of DNA methylation patterns are closely associated with many forms of cancer, although the exact mechanisms underlying this link remain elusive. DNA damage repair systems have evolved to act as a genome-wide surveillance mechanism to maintain chromosome integrity by recognizing and repairing both exogenous and endogenous DNA insults. Impairment of these systems gives rise to mutations and directly contributes to tumorigenesis. Evidence is mounting for a direct link between DNMTs, DNA methylation, and DNA damage repair systems, which provide new insight into the development of cancer. Like tumor suppressor genes, an array of DNA repair genes frequently sustain promoter hypermethylation in a variety of tumors. In addition, DNMT1, but not the DNMT3s, appear to function coordinately with DNA damage repair pathways to protect cells from sustaining mutagenic events, which is very likely through a DNA methylation-independent mechanism. This chapter is focused on reviewing the links between DNA methylation and the DNA damage response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    PubMed  CAS  Google Scholar 

  2. Kareta MS, Botello ZM, Ennis JJ, Chou C, Chedin F (2006) Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem 281(36): 25893–25902

    PubMed  CAS  Google Scholar 

  3. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    PubMed  CAS  Google Scholar 

  4. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220

    PubMed  CAS  Google Scholar 

  5. Egger G, Jeong S, Escobar SG et al (2006) Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc Natl Acad Sci USA 103(38):14080–14085

    PubMed  CAS  Google Scholar 

  6. Riggs AD, Xiong Z (2004) Methylation and epigenetic fidelity. Proc Natl Acad Sci USA 101(1):4–5

    PubMed  CAS  Google Scholar 

  7. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    PubMed  CAS  Google Scholar 

  8. Lei H, Oh SP, Okano M et al (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122(10):3195–3205

    PubMed  CAS  Google Scholar 

  9. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3(9):662–673

    PubMed  CAS  Google Scholar 

  10. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340

    PubMed  CAS  Google Scholar 

  11. Gonzalo S, Jaco I, Fraga MF et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8(4):416–424

    PubMed  CAS  Google Scholar 

  12. Xu GL, Bestor TH, Bourc’his D et al (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402(6758): 187–191

    PubMed  CAS  Google Scholar 

  13. Guo G, Wang W, Bradley A (2004) Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429(6994):891–895

    PubMed  CAS  Google Scholar 

  14. Kim M, Trinh BN, Long TI, Oghamian S, Laird PW (2004) Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells. Nucleic Acids Res 32(19): 5742–5749

    PubMed  CAS  Google Scholar 

  15. Wang KY, James Shen CK (2004) DNA methyltransferase Dnmt1 and mismatch repair. Oncogene 23(47):7898–7902

    PubMed  CAS  Google Scholar 

  16. Dion V, Lin Y, Hubert L Jr, Waterland RA, Wilson JH (2008) Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum Mol Genet 17(9):1306–1317

    PubMed  CAS  Google Scholar 

  17. Loughery JE, Dunne PD, O’Neill KM, Meehan RR, McDaid JR, Walsh CP (2011) DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response. Hum Mol Genet 20(16): 3241–3255

    PubMed  CAS  Google Scholar 

  18. Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65(19):8635–8639

    PubMed  CAS  Google Scholar 

  19. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078

    PubMed  CAS  Google Scholar 

  20. Jacinto FV, Esteller M (2007) Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22(4):247–253

    PubMed  CAS  Google Scholar 

  21. Ha K, Lee GE, Palii SS et al (2011) Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum Mol Genet 20(1):126–140

    PubMed  CAS  Google Scholar 

  22. Milutinovic S, Zhuang Q, Niveleau A, Szyf M (2003) Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem 278(17):14985–14995

    PubMed  CAS  Google Scholar 

  23. Unterberger A, Andrews SD, Weaver IC, Szyf M (2006) DNA methyltransferase 1 ­knockdown activates a replication stress checkpoint. Mol Cell Biol 26(20):7575–7586

    PubMed  CAS  Google Scholar 

  24. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA 102(25):8905–8909

    PubMed  CAS  Google Scholar 

  25. Laghi L, Bianchi P, Malesci A (2008) Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene 27(49):6313–6321

    PubMed  CAS  Google Scholar 

  26. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    PubMed  CAS  Google Scholar 

  27. Raschle M, Dufner P, Marra G, Jiricny J (2002) Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha. J Biol Chem 277(24):21810–21820

    PubMed  CAS  Google Scholar 

  28. Kantelinen J, Kansikas M, Korhonen MK et al (2010) MutSbeta exceeds MutSalpha in dinucleotide loop repair. Br J Cancer 102(6):1068–1073

    PubMed  CAS  Google Scholar 

  29. Thibodeau SN, French AJ, Cunningham JM et al (1998) Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 58(8):1713–1718

    PubMed  CAS  Google Scholar 

  30. Viswanathan M, Tsuchida N, Shanmugam G (2003) Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int J Cancer 105(1):41–46

    PubMed  CAS  Google Scholar 

  31. Kim HG, Lee S, Kim DY et al (2010) Aberrant methylation of DNA mismatch repair genes in elderly patients with sporadic gastric carcinoma: A comparison with younger patients. J Surg Oncol 101(1):28–35

    PubMed  CAS  Google Scholar 

  32. Brucher BL, Geddert H, Langner C et al (2006) Hypermethylation of hMLH1, HPP1, p14(ARF), p16(INK4A) and APC in primary adenocarcinomas of the small bowel. Int J Cancer 119(6):1298–1302

    PubMed  Google Scholar 

  33. Wang YC, Lu YP, Tseng RC et al (2003) Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 111(6):887–895

    PubMed  CAS  Google Scholar 

  34. Murphy MA, Wentzensen N (2011) Frequency of mismatch repair deficiency in ovarian cancer: a systematic review. Int J Cancer 129:1914–1922

    PubMed  CAS  Google Scholar 

  35. Seedhouse CH, Das-Gupta EP, Russell NH (2003) Methylation of the hMLH1 promoter and its association with microsatellite instability in acute myeloid leukemia. Leukemia 17(1):83–88

    PubMed  CAS  Google Scholar 

  36. Lenz G, Hutter G, Hiddemann W, Dreyling M (2004) Promoter methylation and expression of DNA repair genes hMLH1 and MGMT in acute myeloid leukemia. Ann Hematol 83(10):628–633

    PubMed  CAS  Google Scholar 

  37. Nomdedeu JF, Perea G, Estivill C et al (2005) Microsatellite instability is not an uncommon finding in adult de novo acute myeloid leukemia. Ann Hematol 84(6):368–375

    PubMed  CAS  Google Scholar 

  38. Tawfik HM, El-Maqsoud NM, Hak BH, El-Sherbiny YM (2011) Head and neck squamous cell carcinoma: mismatch repair immunohistochemistry and promoter hypermethylation of hMLH1 gene. Am J Otolaryngol 32(6):528–36

    PubMed  CAS  Google Scholar 

  39. Lahtz C, Pfeifer GP (2011) Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol 3(1):51–58

    PubMed  CAS  Google Scholar 

  40. Valle L, Carbonell P, Fernandez V et al (2007) MLH1 germline epimutations in selected patients with early-onset non-polyposis colorectal cancer. Clin Genet 71(3):232–237

    PubMed  CAS  Google Scholar 

  41. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res 62(14):3925–3928

    PubMed  CAS  Google Scholar 

  42. Herman JG, Umar A, Polyak K et al (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95(12):6870–6875

    PubMed  CAS  Google Scholar 

  43. Nakagawa H, Nuovo GJ, Zervos EE et al (2001) Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res 61(19):6991–6995

    PubMed  CAS  Google Scholar 

  44. Kuismanen SA, Holmberg MT, Salovaara R et al (1999) Epigenetic phenotypes distinguish microsatellite-stable and -unstable colorectal cancers. Proc Natl Acad Sci USA 96(22): 12661–12666

    PubMed  CAS  Google Scholar 

  45. Wheeler JM, Beck NE, Kim HC, Tomlinson IP, Mortensen NJ, Bodmer WF (1999) Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1. Proc Natl Acad Sci USA 96(18):10296–10301

    PubMed  CAS  Google Scholar 

  46. Auclair J, Vaissiere T, Desseigne F et al (2011) Intensity-dependent constitutional MLH1 promoter methylation leads to early onset of colorectal cancer by affecting both alleles. Genes Chromosomes Cancer 50(3):178–185

    PubMed  CAS  Google Scholar 

  47. Zhang H, Zhang S, Cui J, Zhang A, Shen L, Yu H (2008) Expression and promoter methylation status of mismatch repair gene hMLH1 and hMSH2 in epithelial ovarian cancer. Aust N Z J Obstet Gynaecol 48(5):505–509

    PubMed  Google Scholar 

  48. Vlaykova T, Mitkova A, Stancheva G et al (2011) Microsatellite instability and promoter hypermethylation of MLH1 and MSH2 in patients with sporadic colorectal cancer. J BUON 16(2):265–273

    PubMed  CAS  Google Scholar 

  49. Nagasaka T, Rhees J, Kloor M et al (2010) Somatic hypermethylation of MSH2 is a frequent event in Lynch Syndrome colorectal cancers. Cancer Res 70(8):3098–3108

    PubMed  CAS  Google Scholar 

  50. Ligtenberg MJ, Kuiper RP, Chan TL et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41(1):112–117

    PubMed  CAS  Google Scholar 

  51. Moelans CB, Verschuur-Maes AH, van Diest PJ (2011) Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225(2):222–231

    PubMed  CAS  Google Scholar 

  52. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447(7147):941–950

    PubMed  CAS  Google Scholar 

  53. Peng B, Hurt EM, Hodge DR, Thomas SB, Farrar WL (2006) DNA hypermethylation and partial gene silencing of human thymine- DNA glycosylase in multiple myeloma cell lines. Epigenetics 1(3):138–145

    PubMed  Google Scholar 

  54. Howard JH, Frolov A, Tzeng CW et al (2009) Epigenetic downregulation of the DNA repair gene MED1/MBD4 in colorectal and ovarian cancer. Cancer Biol Ther 8(1):94–100

    PubMed  CAS  Google Scholar 

  55. Guan H, Ji M, Hou P et al (2008) Hypermethylation of the DNA mismatch repair gene hMLH1 and its association with lymph node metastasis and T1799A BRAF mutation in patients with papillary thyroid cancer. Cancer 113(2):247–255

    PubMed  CAS  Google Scholar 

  56. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    PubMed  CAS  Google Scholar 

  57. Yang J, Xu Z, Li J et al (2010) XPC epigenetic silence coupled with p53 alteration has a significant impact on bladder cancer outcome. J Urol 184(1):336–343

    PubMed  CAS  Google Scholar 

  58. Chen HY, Shao CJ, Chen FR, Kwan AL, Chen ZP (2010) Role of ERCC1 promoter hypermethylation in drug resistance to cisplatin in human gliomas. Int J Cancer 126(8):1944–1954

    PubMed  CAS  Google Scholar 

  59. Liu WB, Ao L, Cui ZH et al (2011) Molecular analysis of DNA repair gene methylation and protein expression during chemical-induced rat lung carcinogenesis. Biochem Biophys Res Commun 408(4):595–601

    PubMed  CAS  Google Scholar 

  60. Jiang J, Liang X, Zhou X et al (2010) DNA repair gene X-ray repair cross complementing group 1 Arg194Trp polymorphism on the risk of lung cancer: a meta-analysis on 22 studies. J Thorac Oncol 5(11):1741–1747

    PubMed  Google Scholar 

  61. Wang P, Tang JT, Peng YS, Chen XY, Zhang YJ, Fang JY (2010) XRCC1 downregulated through promoter hypermethylation is involved in human gastric carcinogenesis. J Dig Dis 11(6):343–351

    PubMed  CAS  Google Scholar 

  62. Peng B, Hodge DR, Thomas SB et al (2005) Epigenetic silencing of the human nucleotide excision repair gene, hHR23B, in interleukin-6-responsive multiple myeloma KAS-6/1 cells. J Biol Chem 280(6):4182–4187

    PubMed  CAS  Google Scholar 

  63. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic ­stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3):196–207

    PubMed  CAS  Google Scholar 

  64. Mazon G, Mimitou EP, Symington LS. SnapShot: homologous recombination in DNA double-strand break repair. Cell. 2010;142(4):646, 646.e1.

    Google Scholar 

  65. Esteller M, Silva JM, Dominguez G et al (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(7):564–569

    PubMed  CAS  Google Scholar 

  66. Esteller M, Risques RA, Toyota M et al (2001) Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res 61(12): 4689–4692

    PubMed  CAS  Google Scholar 

  67. Baldwin RL, Nemeth E, Tran H et al (2000) BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res 60(19):5329–5333

    PubMed  CAS  Google Scholar 

  68. Bernal C, Vargas M, Ossandon F et al (2008) DNA methylation profile in diffuse type gastric cancer: evidence for hypermethylation of the BRCA1 promoter region in early-onset gastric carcinogenesis. Biol Res 41(3):303–315

    PubMed  Google Scholar 

  69. Cabello MJ, Grau L, Franco N et al (2011) Multiplexed methylation profiles of tumor suppressor genes in bladder cancer. J Mol Diagn 13(1):29–40

    PubMed  CAS  Google Scholar 

  70. Lee MN, Tseng RC, Hsu HS et al (2007) Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13(3):832–838

    PubMed  CAS  Google Scholar 

  71. Esteller M, Fraga MF, Guo M et al (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10(26):3001–3007

    PubMed  CAS  Google Scholar 

  72. Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11(10): 1226–1241

    PubMed  CAS  Google Scholar 

  73. Kee Y, D’Andrea AD (2010) Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24(16):1680–1694

    PubMed  CAS  Google Scholar 

  74. Meier D, Schindler D (2011) Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements. PLoS One 6(8):e22911

    PubMed  CAS  Google Scholar 

  75. Hess CJ, Ameziane N, Schuurhuis GJ et al (2008) Hypermethylation of the FANCC and FANCL promoter regions in sporadic acute leukaemia. Cell Oncol 30(4):299–306

    PubMed  CAS  Google Scholar 

  76. Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT (2004) Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23(4):1000–1004

    PubMed  CAS  Google Scholar 

  77. Narayan G, Arias-Pulido H, Nandula SV et al (2004) Promoter hypermethylation of FANCF: disruption of Fanconi anemia-BRCA pathway in cervical cancer. Cancer Res 64(9): 2994–2997

    PubMed  CAS  Google Scholar 

  78. Lim SL, Smith P, Syed N et al (2008) Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br J Cancer 98(8):1452–1456

    PubMed  CAS  Google Scholar 

  79. Pegg AE, Dolan ME, Moschel RC (1995) Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol 51:167–223

    PubMed  CAS  Google Scholar 

  80. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4(4):296–307

    PubMed  CAS  Google Scholar 

  81. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59(4):793–797

    PubMed  CAS  Google Scholar 

  82. Weller M, Stupp R, Reifenberger G et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6(1):39–51

    PubMed  CAS  Google Scholar 

  83. Whitehall VL, Walsh MD, Young J, Leggett BA, Jass JR (2001) Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res 61(3):827–830

    PubMed  CAS  Google Scholar 

  84. Park TJ, Han SU, Cho YK, Paik WK, Kim YB, Lim IK (2001) Methylation of O(6)-methylguanine-DNA methyltransferase gene is associated significantly with K-ras mutation, lymph node invasion, tumor staging, and disease free survival in patients with gastric carcinoma. Cancer 92(11):2760–2768

    PubMed  CAS  Google Scholar 

  85. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54(18): 4855–4878

    PubMed  CAS  Google Scholar 

  86. Zhang YJ, Chen Y, Ahsan H et al (2003) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relationship to aflatoxin B1-DNA adducts and p53 mutation in hepatocellular carcinoma. Int J Cancer 103(4): 440–444

    PubMed  CAS  Google Scholar 

  87. Wolf P, Hu YC, Doffek K, Sidransky D, Ahrendt SA (2001) O(6)-Methylguanine-DNA methyltransferase promoter hypermethylation shifts the p53 mutational spectrum in non-small cell lung cancer. Cancer Res 61(22):8113–8117

    PubMed  CAS  Google Scholar 

  88. Zhang L, Lu W, Miao X, Xing D, Tan W, Lin D (2003) Inactivation of DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relation to p53 mutations in esophageal squamous cell carcinoma. Carcinogenesis 24(6):1039–1044

    PubMed  CAS  Google Scholar 

  89. Nakamura M, Watanabe T, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C –> A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis 22(10):1715–1719

    PubMed  CAS  Google Scholar 

  90. Sabharwal A, Middleton MR (2006) Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in cancer therapy. Curr Opin Pharmacol 6(4):355–363

    PubMed  CAS  Google Scholar 

  91. Kitano K, Kim SY, Hakoshima T (2010) Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18(2):177–187

    PubMed  CAS  Google Scholar 

  92. Opresko PL (2008) Telomere ResQue and preservation—roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 129(1–2):79–90

    PubMed  CAS  Google Scholar 

  93. Agrelo R, Cheng WH, Setien F et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 103(23):8822–8827

    PubMed  CAS  Google Scholar 

  94. Kawasaki T, Ohnishi M, Suemoto Y et al (2008) WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol 21(2):150–158

    PubMed  CAS  Google Scholar 

  95. Smith JA, Ndoye AM, Geary K, Lisanti MP, Igoucheva O, Daniel R (2010) A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4. Aging Cell 9(4):580–591

    PubMed  CAS  Google Scholar 

  96. Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433

    PubMed  CAS  Google Scholar 

  97. Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235

    PubMed  CAS  Google Scholar 

  98. Lazzaro F, Giannattasio M, Puddu F et al (2009) Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair (Amst) 8(9):1055–1067

    CAS  Google Scholar 

  99. Linding R, Jensen LJ, Ostheimer GJ et al (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129(7):1415–1426

    PubMed  CAS  Google Scholar 

  100. Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828): 1160–1166

    PubMed  CAS  Google Scholar 

  101. Kim WJ, Vo QN, Shrivastav M, Lataxes TA, Brown KD (2002) Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 21(24):3864–3871

    PubMed  CAS  Google Scholar 

  102. Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23(58): 9432–9437

    PubMed  CAS  Google Scholar 

  103. Ai L, Vo QN, Zuo C et al (2004) Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev 13(1):150–156

    PubMed  CAS  Google Scholar 

  104. Bartek J, Falck J, Lukas J (2001) CHK2 kinase—a busy messenger. Nat Rev Mol Cell Biol 2(12):877–886

    PubMed  CAS  Google Scholar 

  105. Bell DW, Varley JM, Szydlo TE et al (1999) Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286(5449):2528–2531

    PubMed  CAS  Google Scholar 

  106. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3(5):421–429

    PubMed  CAS  Google Scholar 

  107. Kato N, Fujimoto H, Yoda A et al (2004) Regulation of Chk2 gene expression in lymphoid malignancies: involvement of epigenetic mechanisms in Hodgkin’s lymphoma cell lines. Cell Death Differ 11(Suppl 2):S153–161

    PubMed  CAS  Google Scholar 

  108. Kim DS, Kim MJ, Lee JY et al (2009) Epigenetic inactivation of checkpoint kinase 2 gene in non-small cell lung cancer and its relationship with clinicopathological features. Lung Cancer 65(2):247–250

    PubMed  Google Scholar 

  109. Wang H, Wang S, Shen L et al (2010) Chk2 down-regulation by promoter hypermethylation in human bulk gliomas. Life Sci 86(5–6):185–191

    PubMed  CAS  Google Scholar 

  110. Sullivan A, Yuille M, Repellin C et al (2002) Concomitant inactivation of p53 and Chk2 in breast cancer. Oncogene 21(9):1316–1324

    PubMed  CAS  Google Scholar 

  111. Williams LH, Choong D, Johnson SA, Campbell IG (2006) Genetic and epigenetic analysis of CHEK2 in sporadic breast, colon, and ovarian cancers. Clin Cancer Res 12(23):6967–6972

    PubMed  CAS  Google Scholar 

  112. Jascur T, Boland CR (2006) Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119(9):2030–2035

    PubMed  CAS  Google Scholar 

  113. Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci USA 100(3):776–781

    PubMed  CAS  Google Scholar 

  114. Lin Y, Wilson JH (2009) Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells. DNA Repair (Amst) 8(8):878–885

    CAS  Google Scholar 

  115. Lin Y, Dion V, Wilson JH (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13(2):179–180

    PubMed  CAS  Google Scholar 

  116. Karran P (2006) Thiopurines, DNA damage, DNA repair and therapy-related cancer. Br Med Bull 79–80:153–170

    PubMed  Google Scholar 

  117. Bellacosa A, Cicchillitti L, Schepis F et al (1999) MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc Natl Acad Sci USA 96(7):3969–3974

    PubMed  CAS  Google Scholar 

  118. Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR (2009) MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos. Development 136(13):2277–2286

    PubMed  CAS  Google Scholar 

  119. Cortellino S, Turner D, Masciullo V et al (2003) The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proc Natl Acad Sci USA 100(25):15071–15076

    PubMed  CAS  Google Scholar 

  120. Boland MJ, Christman JK (2008) Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. J Mol Biol 379(3):492–504

    PubMed  CAS  Google Scholar 

  121. Li YQ, Zhou PZ, Zheng XD, Walsh CP, Xu GL (2007) Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair. Nucleic Acids Res 35(2): 390–400

    PubMed  CAS  Google Scholar 

  122. Kimura H, Shiota K (2003) Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem 278(7):4806–4812

    PubMed  CAS  Google Scholar 

  123. Jackson-Grusby L, Beard C, Possemato R et al (2001) Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 27(1):31–39

    PubMed  CAS  Google Scholar 

  124. Flores-Rozas H, Clark D, Kolodner RD (2000) Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet 26(3):375–378

    PubMed  CAS  Google Scholar 

  125. Iyer RR, Pohlhaus TJ, Chen S et al (2008) The MutSalpha-proliferating cell nuclear antigen interaction in human DNA mismatch repair. J Biol Chem 283(19):13310–13319

    PubMed  CAS  Google Scholar 

  126. Plotz G, Welsch C, Giron-Monzon L et al (2006) Mutations in the MutSalpha interaction interface of MLH1 can abolish DNA mismatch repair. Nucleic Acids Res 34(22):6574–6586

    PubMed  CAS  Google Scholar 

  127. Kleczkowska HE, Marra G, Lettieri T, Jiricny J (2001) hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 15(6):724–736

    PubMed  CAS  Google Scholar 

  128. Umar A, Buermeyer AB, Simon JA et al (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87(1):65–73

    PubMed  CAS  Google Scholar 

  129. Chen F, Arseven OK, Cryns VL (2004) Proteolysis of the mismatch repair protein MLH1 by caspase-3 promotes DNA damage-induced apoptosis. J Biol Chem 279(26):27542–27548

    PubMed  CAS  Google Scholar 

  130. Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19(17):1951–1967

    PubMed  CAS  Google Scholar 

  131. Bischof O, Galande S, Farzaneh F, Kohwi-Shigematsu T, Campisi J (2001) Selective cleavage of BLM, the bloom syndrome protein, during apoptotic cell death. J Biol Chem 276(15): 12068–12075

    PubMed  CAS  Google Scholar 

  132. Wang J, Pabla N, Wang CY, Wang W, Schoenlein PV, Dong Z (2006) Caspase-mediated cleavage of ATM during cisplatin-induced tubular cell apoptosis: inactivation of its kinase activity toward p53. Am J Physiol Renal Physiol 291(6):F1300–1307

    PubMed  CAS  Google Scholar 

  133. Knox JD, Araujo FD, Bigey P et al (2000) Inhibition of DNA methyltransferase inhibits DNA replication. J Biol Chem 275(24):17986–17990

    PubMed  CAS  Google Scholar 

  134. Bartek J, Lukas J (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13(6):738–747

    PubMed  CAS  Google Scholar 

  135. Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1(3):179–186

    PubMed  CAS  Google Scholar 

  136. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410(6830):842–847

    PubMed  CAS  Google Scholar 

  137. Maser RS, Mirzoeva OK, Wells J et al (2001) Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol Cell Biol 21(17):6006–6016

    PubMed  CAS  Google Scholar 

  138. Hardy CF (1997) Identification of Cdc45p, an essential factor required for DNA replication. Gene 187(2):239–246

    PubMed  CAS  Google Scholar 

  139. Rhee I, Bachman KE, Park BH et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416(6880):552–556

    PubMed  CAS  Google Scholar 

  140. Ting AH, Jair KW, Suzuki H, Yen RW, Baylin SB, Schuebel KE (2004) CpG island hypermethylation is maintained in human colorectal cancer cells after RNAi-mediated depletion of DNMT1. Nat Genet 36(6):582–584

    PubMed  CAS  Google Scholar 

  141. Chen T, Hevi S, Gay F et al (2007) Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 39(3):391–396

    PubMed  CAS  Google Scholar 

  142. Brown KD, Robertson KD (2007) DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet 39(3):289–290

    PubMed  CAS  Google Scholar 

  143. Canman CE, Lim DS, Cimprich KA et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679

    PubMed  CAS  Google Scholar 

  144. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506

    PubMed  CAS  Google Scholar 

  145. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395(6697):89–93

    PubMed  CAS  Google Scholar 

  146. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD (2008) DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 28(2):752–771

    PubMed  CAS  Google Scholar 

  147. Spada F, Haemmer A, Kuch D et al (2007) DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J Cell Biol 176(5):565–571

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Robertson laboratory is supported by NIH grants R01CA116028, R01CA114229, and the Georgia Cancer Coalition (KDR). KDR is a Georgia Cancer Coalition Distinguished Cancer Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith D. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jin, B., Robertson, K.D. (2013). DNA Methyltransferases, DNA Damage Repair, and Cancer. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_1

Download citation

Publish with us

Policies and ethics