Skip to main content

Sea Anemone Toxins Affecting Potassium Channels

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 46))

Abstract

The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35–37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58–59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42–43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104:217–231.

    CAS  Google Scholar 

  • Abita JP, Chicheportiche R, Schweitz H, Lazdunski, M (1977) Effects of neurotoxins (veratridine, sea anemone toxin, tetrodotoxin) on transmitter accumulation and release by nerve terminals in vitro. Biochemistry 16:1838–1844.

    CAS  Google Scholar 

  • Aiyar J, Withka JM, Rizzi JP, Singleton DH, Andrews GC, Lin W, Boyd J, Hanson DC, Simon M, Dethlefs B, Lee C-L, Hall JE, Gutman GA, Chandy KG (1995) Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron 15:1169–1181.

    CAS  Google Scholar 

  • Alessandri-Haber N, Lecoq A, Gasparini S, Grangier-Macmath G, Jacquet G, Harvey AL, de Medeiros C, Rowan EG, Gola M, Menez A, Crest M (1999) Mapping the functional anatomy of BgK on Kv1.1, Kv1.2, and Kv1.3. Clues to design analogs with enhanced selectivity. J Biol Chem 274:35653–35661.

    CAS  Google Scholar 

  • Alsen C, Beress L, Tesseraux I (1978) Toxicities of sea anemone (Anemonia sulcata) polypeptides in mammals. Toxicon 16:561–566.

    CAS  Google Scholar 

  • Aneiros A, Garcia I, Martinez JR, Harvey AL, Anderson AJ, Marshall DL, Engstrom A, Hellman U, Karlsson E (1993) A potassium channel toxin from the secretion of the sea anemone Bunodosoma granulifera. Isolation, amino acid sequence and biological activity. Biochim Biophys Acta 1157:86–92.

    CAS  Google Scholar 

  • Angulo E, Noe V, Casado V, Mallol J, Gomez-Isla T, Lluis C, Ferrer I, Ciudad CJ, Franco R (2004) Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. J Neurochem 91:547–557.

    CAS  Google Scholar 

  • Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ (2003) Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat Neurosci 6:258–266.

    CAS  Google Scholar 

  • Barhanin J, Hugues M, Schweitz H, Vincent JP, Lazdunski M (1981) Structure-function relationships of sea anemone toxin II from Anemonia sulcata. J Biol Chem 256:5764–5769.

    CAS  Google Scholar 

  • Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Beraud E (2001) Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 98:13942–13947.

    CAS  Google Scholar 

  • Beeton C, Wulff H, Singh S, Botsko S, Crossley G, Gutman GA, Cahalan MD, Pennington M, Chandy KG (2003) A novel fluorescent toxin to detect and investigate Kv1.3 channel up-reg-ulation in chronically activated T lymphocytes. J Biol Chem 278:9928–9937.

    CAS  Google Scholar 

  • Benzinger GR, Kyle JW, Blumenthal KM, Hanck DA (1998) A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem 273:80–84.

    CAS  Google Scholar 

  • Beress L, Beress R, Wunderer G (1975) Isolation and characterisation of three polypeptides with neurotoxic activity from Anemonia sulcata. FEBS Lett 50:311–314.

    CAS  Google Scholar 

  • Beress L, Doppelfeld I-S, Etschenberg E, Graf E, Henschen A, Zwick J (1985) Federal Republic of Germany Patent DE 3324689 A1.

    Google Scholar 

  • Bergman C, Dubois JM, Rojas E, Rathmayer W (1976) Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim Biophys Acta 455:173–184.

    CAS  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592.

    CAS  Google Scholar 

  • Bidard JN, Mourre C, Lazdunski M (1987) Two potent central convulsant peptides, a bee venom toxin, the MCD peptide, and a snake venom toxin, dendrotoxin I, known to block K+ channels, have interacting receptor sites. Biochem Biophys Res Commun 143:383–389.

    CAS  Google Scholar 

  • Bontems F, Roumestand C, Gilquin B, Menez A, Toma, F (1991) Refined structure of charyb-dotoxin:common motifs in scorpion toxins and insect defensins. Science 254:1521–1523.

    CAS  Google Scholar 

  • Bourinet E, Stotz SC, Spaetgens RL, Dayanithi G, Lemos J, Nargeot J, Zamponi GW (2001) Interaction of SNX482 with domains III and IV inhibits activation gating of a1E(CaV2.3) calcium channels. Biophys J 81:79–88.

    CAS  Google Scholar 

  • Braud S, Belin P, Dassa J, Pardo, L, Mourier G, Caruana A, Priest BT, Dulski P, Garcia ML, Menez A, Boulain JC, Gasparini S (2004) BgK, a disulfide-containing sea anemone toxin blocking K+ channels, can be produced in Escherichia coli cytoplasm as a functional tagged protein. Protein Expr Purif 38:69–78.

    CAS  Google Scholar 

  • Bruhn T, Schaller C, Schulze C, Sanchez-Rodriguez J, Dannmeier C, Ravens U, Heubach JF, Eckhardt K, Schmidtmayer J, Schmidt H, Aneiros A, Wachter E, Beress L (2001) Isolation and characterisation of five neurotoxic and cardiotoxic polypeptides from the sea anemone Antho-pleura elegantissima. Toxicon 39:693–702.

    CAS  Google Scholar 

  • Castaneda O, Sotolongo V, Amor AM, Stocklin R, Anderson AJ, Harvey AL, Engstrom A, Wernstedt C, Karlsson E (1995) Characterization of a potassium channel toxin from the Caribbean sea anemone Stichodactyla helianthus. Toxicon 33:603–613.

    CAS  Google Scholar 

  • Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892.

    CAS  Google Scholar 

  • Chagot B, Diochot S, Pimentel C, Lazdunski M, Darbon H (2005a) Solution structure of APETx1 from the sea anemone Anthopleura elegantissima:a new fold for an HERG toxin. Proteins 59:380–386.

    CAS  Google Scholar 

  • Chagot B, Escoubas P, Diochot S, Bernard C, Lazdunski M, Darbon H (2005b) Solution structure of APETx2, a specific peptide inhibitor of ASIC3 proton-gated channels. Protein Sci 14:2003–2010.

    CAS  Google Scholar 

  • Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B (1999) Molecular diversity of K+ channels. Ann NY Acad Sci 868:233–285.

    CAS  Google Scholar 

  • Cotton J, Crest M, Bouet F, Alessandri N, Gola M, Forest E, Karlsson E, Castaneda O, Harvey AL, Vita C, Menez A (1997) A potassium-channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kv1 channels. Revision of the amino acid sequence, disulfide-bridge assignment, chemical synthesis, and biological activity. Eur J Biochem 244:192–202.

    CAS  Google Scholar 

  • Dauplais M, Lecoq A, Song J, Cotton J, Jamin N, Gilquin B, Roumestand C, Vita C, de Medeiros CL, Rowan EG, Harvey AL, Menez A (1997) On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem 272:4302–4309.

    CAS  Google Scholar 

  • Diochot S, Schweitz H, Beress L, Lazdunski M (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J Biol Chem 273:6744–6749.

    CAS  Google Scholar 

  • Diochot S, Drici MD, Moinier D, Fink M, Lazdunski M, Schweitz H, Beress L (1999) Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of Ito1 in cardiac electrogenesis. Brit J Pharmacol 126:251–263.

    CAS  Google Scholar 

  • Diochot S, Loret E, Bruhn T, Beress L, Lazdunski M (2003) APETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels. Mol Pharmacol 64:59–69.

    CAS  Google Scholar 

  • Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 23:1516–1525.

    CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel:molecular basis of K+ conduction and selectivity. Science 280:69–77.

    CAS  Google Scholar 

  • Driscoll PC, Clore GM, Beress L, Gronenborn AM (1989a) A proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata:sequential and stereospecific resonance assignment and secondary structure. Biochemistry 28:2178–2187.

    CAS  Google Scholar 

  • Driscoll PC, Gronenborn AM, Beress L, Clore GM (1989b) Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata:a study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28:2188–2198.

    CAS  Google Scholar 

  • Erisir A, Lau D, Rudy B, Leonard CS (1999) Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J Neurophysiol 82:2476–2489.

    CAS  Google Scholar 

  • Gallagher MJ, Blumenthal KM (1994) Importance of the unique cationic residues arginine 12 and lysine 49 in the activity of the cardiotonic polypeptide anthopleurin B. J Biol Chem 269:254–259.

    CAS  Google Scholar 

  • Garateix A, Vega R, Salceda E, Cebada J, Aneiros A, Soto E (2000) BgK anemone toxin inhibits outward K+ currents in snail neurons. Brain Res 864:312–314.

    CAS  Google Scholar 

  • Gasparini S, Gilquin B, Menez A (2004) Comparison of sea anemone and scorpion toxins binding to Kv1 channels:an example of convergent evolution. Toxicon 43:901–908.

    CAS  Google Scholar 

  • Gendeh GS, Chung MC, Jeyaseelan K (1997a) Genomic structure of a potassium channel toxin from Heteractis magnifica. FEBS Lett 418:183–188.

    CAS  Google Scholar 

  • Gendeh GS, Young LC, de Medeiros CL, Jeyaseelan K, Harvey AL, Chung MC (1997b) A new potassium channel toxin from the sea anemone Heteractis magnifica:isolation, cDNA cloning, and functional expression. Biochemistry 36:11461–11471.

    CAS  Google Scholar 

  • Gilquin B, Racape J, Wrisch A, Visan V, Lecoq A, Grissmer S, Menez A, Gasparini S (2002) Structure of the BgK-Kv1.1 complex based on distance restraints identified by double mutant cycles. Molecular basis for convergent evolution of Kv1 channel blockers. J Biol Chem 277:37406–37413.

    CAS  Google Scholar 

  • Gilquin B, Braud S, Eriksson MA, Roux B, Bailey TD, Priest BT, Garcia ML, Menez A, Gasparini S (2005) A variable residue in the pore of Kv1 channels is critical for the high affinity of block-ers from sea anemones and scorpions. J Biol Chem 280:27093–27102.

    CAS  Google Scholar 

  • Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol 45:1227–1134.

    CAS  Google Scholar 

  • Gross A, Abramson T, MacKinnon R (1994) Transfer of the scorpion toxin receptor to an insensitive potassium channel. Neuron 13:961–966.

    CAS  Google Scholar 

  • Halliwell J V, Othman IB, Pelchen-Matthews A, Dolly JO (1986) Central action of dendrotoxin:selective reduction of a transient K conductance in hippocampus and binding to localized acceptors. Proc Natl Acad Sci USA 83:493–497.

    CAS  Google Scholar 

  • Hanck DA, Sheets MF (1995) Modification of inactivation in cardiac sodium channels:ionic current studies with anthopleurin-A toxin. J Gen Physiol 106:601–616.

    CAS  Google Scholar 

  • Harvey AL, Anderson AJ (1985) Dendrotoxins:snake toxins that block potassium channels and facilitate neurotransmitter release. Pharmacol Ther 31:33–55.

    CAS  Google Scholar 

  • Harvey AL, Rowan EG, Vatanpour H, Fatehi M, Castaneda O, Karlsson E (1994) Potassium channel toxins and transmitter release. Ann NY Acad Sci 710:1–10.

    CAS  Google Scholar 

  • Hasegawa Y, Honma T, Nagai H, Ishida M, Nagashima Y, Shiomi K (2006) Isolation and cDNA cloning of a potassium channel peptide toxin from the sea anemone Anemonia erythraea. Toxicon 48:536–542.

    CAS  Google Scholar 

  • Jan LY, Jan YN (1997) Voltage-gated and inwardly rectifying potassium channels. J Physiol 505 (Pt. 2):267–282.

    CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon, R (2002) The open pore conformation of potassium channels. Nature 417:523–526.

    CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41.

    CAS  Google Scholar 

  • Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003b) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48.

    CAS  Google Scholar 

  • Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37:13291–13299.

    CAS  Google Scholar 

  • Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG (1998) ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 273:32697–32707.

    CAS  Google Scholar 

  • Kauferstein S, Huys I, Lamthanh H, Stocklin R, Sotto F, Menez A, Tytgat J, Mebs D (2003) A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels. Toxicon 42:43–52.

    CAS  Google Scholar 

  • Kelso GJ, Blumenthal KM (1998) Identification and characterization of novel sodium channel toxins from the sea anemone Anthopleura xanthogrammica. Toxicon 36:41–51.

    CAS  Google Scholar 

  • Kelso GJ, Drum CL, Hanck DA, Blumenthal KM (1996) Role for Pro-13 in directing high-affinity binding of anthopleurin B to the voltage-sensitive sodium channel. Biochemistry 35:14157–14164.

    CAS  Google Scholar 

  • Khera PK, Benzinger GR, Lipkind G, Drum CL, Hanck DA, Blumenthal KM (1995) Multiple cationic residues of anthopleurin B that determine high affinity and channel isoform discrimination. Biochemistry 34:8533–8541.

    CAS  Google Scholar 

  • Lanigan MD, Kalman K, Lefievre Y, Pennington MW, Chandy KG, Norton RS (2002) Mutating a critical lysine in ShK toxin alters its binding configuration in the pore-vestibule region of the voltage-gated potassium channel, Kv1.3. Biochemistry 41:11963–11971.

    CAS  Google Scholar 

  • Laraba-Djebari F, Legros C, Crest M, Ceard B, Romi R, Mansuelle P, Jacquet G, van Rietschoten J, Gola M, Rochat H, Bougis PE, Martin-Eauclaire MF (1994) The kaliotoxin family enlarged. Purification, characterization, and precursor nucleotide sequence of KTX2 from Androctonus australis venom. J Biol Chem 269:32835–32843.

    CAS  Google Scholar 

  • Lee HC, Wang JM, Swartz KJ (2003) Interaction between extracellular hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40:527–536.

    CAS  Google Scholar 

  • Legros C, Pollmann V, Knaus HG, Farrell AM, Darbon H, Bougis PE, Martin-Eauclaire MF, Pongs O (2000) Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels. J Biol Chem 275:16918–16924.

    CAS  Google Scholar 

  • Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:793–801.

    Google Scholar 

  • Li-Smerin Y, Swartz KJ (1998) Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc Natl Acad Sci USA 95:8585–8589.

    CAS  Google Scholar 

  • Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068.

    CAS  Google Scholar 

  • Loret EP, del Valle RM, Mansuelle P, Sampieri F, Rochat H (1994) Positively charged amino acid residues located similarly in sea anemone and scorpion toxins. J Biol Chem 269:16785–16788.

    CAS  Google Scholar 

  • MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232–235.

    CAS  Google Scholar 

  • Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Blondeau N, Escoubas P, Gelot A, Cupo A, Zimmer A, Zimmer AM, Eschalier A, Lazdunski M (2007) A tarantula pep-tide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci 10:943–945.

    CAS  Google Scholar 

  • Miller C (1995) The charybdotoxin family of K+ channel-blocking peptides. Neuron 15:5–10.

    CAS  Google Scholar 

  • Minagawa S, Ishida M, Nagashima Y, Shiomi, K (1998) Primary structure of a potassium channel toxin from the sea anemone Actinia equina. FEBS Lett 427:149–151.

    CAS  Google Scholar 

  • Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378:717–726.

    CAS  Google Scholar 

  • Mourre C, Hugues M, Lazdunski M (1986) Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels. Brain Res 382:239–249.

    CAS  Google Scholar 

  • Mourre C, Lazdunski M, Jarrard LE (1997) Behaviors and neurodegeneration induced by two blockers of K+ channels, the mast cell degranulating peptide and dendrotoxin I. Brain Res 762:223–227.

    CAS  Google Scholar 

  • Norton RS (1991) Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon 29:1051–1084.

    CAS  Google Scholar 

  • Norton RS, Pennington MW, Wulff H (2004) Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr Med Chem 11:3041–3052.

    CAS  Google Scholar 

  • Oliveira JS, Zaharenko AJ, Ferreira WA Jr, Konno K, Shida CS, Richardson M, Lucio AD, Beirao PS, de Freitas JC (2006) BcIV, a new paralyzing peptide obtained from the venom of the sea anemone Bunodosoma caissarum. A comparison with the Na+ channel toxin BcIII. Biochim Biophys Acta 1764:1592–1600.

    CAS  Google Scholar 

  • Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310.

    CAS  Google Scholar 

  • Patel AJ, Lazdunski M, Honore E (2001) Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 13:422–428.

    CAS  Google Scholar 

  • Pennington MW, Byrnes ME, Zaydenberg I, Khaytin I, de Chastonay J, Krafte DS, Hill R, Mahnir VM, Volberg WA, Gorczyca W, Kem WR (1995) Chemical synthesis and characterization of ShK toxin:a potent potassium channel inhibitor from a sea anemone. Int J Pept Protein Res 46:354–358.

    CAS  Google Scholar 

  • Pennington MW, Mahnir VM, Khaytin I, Zaydenberg I, Byrnes ME, Kem WR (1996a) An essential binding surface for ShK toxin interaction with rat brain potassium channels. Biochemistry 35:16407–16411.

    CAS  Google Scholar 

  • Pennington MW, Mahnir VM, Krafte DS, Zaydenberg I, Byrnes ME, Khaytin I, Crowley K, Kem WR (1996b) Identification of three separate binding sites on SHK toxin, a potent inhibitor of voltage-dependent potassium channels in human T-lymphocytes and rat brain. Biochem Biophys Res Commun 219:696–701.

    CAS  Google Scholar 

  • Pongs O (1992) Molecular biology of voltage-dependent potassium channels. Physiol Rev 72:S69–S88.

    CAS  Google Scholar 

  • Racape J, Lecoq A, Romi-Lebrun R, Liu J, Kohler M, Garcia ML, Menez A, Gasparini S (2002) Characterization of a novel radiolabeled peptide selective for a subpopulation of voltage-gated potassium channels in mammalian brain. J Biol Chem 277:3886–3893.

    CAS  Google Scholar 

  • Rauer H, Pennington M, Cahalan M, Chandy KG (1999) Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 274:21885–21892.

    CAS  Google Scholar 

  • Rehm H, Lazdunski M (1988) Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I. Proc Natl Acad Sci USA 85:4919–4923.

    CAS  Google Scholar 

  • Rehm H, Bidard JN, Schweitz H, Lazdunski M (1988) The receptor site for the bee venom mast cell degranulating peptide. Affinity labeling and evidence for a common molecular target for mast cell degranulating peptide and dendrotoxin I, a snake toxin active on K+ channels. Biochemistry 27:1827–1832.

    CAS  Google Scholar 

  • Reimer NS, Yasunobu CL, Yasunobu KT, Norton TR (1985) Amino acid sequence of the Antho-pleura xanthogrammica heart stimulant, anthopleurin-B. J Biol Chem 260:8690–8693.

    CAS  Google Scholar 

  • Renaud JF, Fosset M, Schweitz H, Lazdunski M (1986) The interaction of polypeptide neurotox-ins with tetrodotoxin-resistant Na+ channels in mammalian cardiac cells. Correlation with inotropic and arrhythmic effects. Eur J Pharmacol 120:161–170.

    CAS  Google Scholar 

  • Restano-Cassulini R, Korolkova YV, Diochot S, Gurrola G, Guasti L, Possani LD, Lazdunski M, Grishin EV, Arcangeli A, Wanke E (2006) Species diversity and peptide toxins blocking selectivity of ether-a-go-go-related gene subfamily K+ channels in the central nervous system. Mol Pharmacol 69:1673–1683.

    CAS  Google Scholar 

  • Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of a-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel a subunit. J Biol Chem 271:15950–15962.

    CAS  Google Scholar 

  • Romey G, Abita JP, Schweitz H, Wunderer G, Lazdunski M (1976) Sea anemone toxin:a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling. Proc Natl Acad Sci USA 73:4055–4059.

    CAS  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels:voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526.

    CAS  Google Scholar 

  • Ruta V, MacKinnon R (2004) Localization of the voltage-sensor toxin receptor on KvAP. Bio-chemistry 43:10071–10079.

    CAS  Google Scholar 

  • Ruta V, Jiang Y, Lee A, Chen J, MacKinnon R (2003) Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422:180–185.

    CAS  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia:HERG encodes the IKr potassium channel. Cell 81:299–307.

    CAS  Google Scholar 

  • Sanguinetti MC, Curran ME, Spector PS, Keating MT (1996) Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 93:2208–2212.

    CAS  Google Scholar 

  • Schweitz H (1984) Lethal potency in mice of toxins from scorpion, sea anemone, snake and bee venoms following intraperitoneal and intracisternal injection. Toxicon 22:308–311.

    CAS  Google Scholar 

  • Schweitz H, Vincent JP, Barhanin J, Frelin C, Linden G, Hugues M, Lazdunski M (1981) Purification and pharmacological properties of eight sea anemone toxins from Anemonia sulcata, Anthopleura xanthogrammica, Stoichactis giganteus, and Actinodendron plumosum. Bio-chemistry 20:5245–5252.

    CAS  Google Scholar 

  • Schweitz H, Bruhn T, Guillemare E, Moinier D, Lancelin JM, Beress L, Lazdunski M (1995) Kalicludines and kaliseptine. Two different classes of sea anemone toxins for voltage sensitive K+ channels. J Biol Chem 270:25121–25126.

    CAS  Google Scholar 

  • Shibata S, Norton TR, Izumi T, Matsuo T, Katsuki S (1976) A polypeptide (AP-A) from sea anemone (Anthopleura xanthogrammica) with potent positive inotropic action. J Pharmacol Exp Ther 199:298–309.

    CAS  Google Scholar 

  • Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels:molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–594.

    CAS  Google Scholar 

  • Shon KJ, Stocker M, Terlau H, Stuhmer W, Jacobsen R, Walker C, Grilley M, Watkins M, Hillyard DR, Gray WR, Olivera BM (1998) k-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J Biol Chem 273:33–38.

    CAS  Google Scholar 

  • Swartz KJ (2004) Towards a structural view of gating in potassium channels. Nat Rev Neurosci 5:905–916.

    CAS  Google Scholar 

  • Swartz KJ, MacKinnon R (1995) An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15:941–949.

    CAS  Google Scholar 

  • Swartz KJ, MacKinnon R (1997) Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18:665–673.

    CAS  Google Scholar 

  • Torres AM, Kuchel PW (2004) The b-defensin-fold family of polypeptides. Toxicon 44:581–588.

    CAS  Google Scholar 

  • Tudor JE, Pallaghy PK, Pennington MW, Norton RS (1996) Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat Struct Biol 3:317–320.

    CAS  Google Scholar 

  • Tytgat J, Debont T, Carmeliet E, Daenens P (1995) The a-dendrotoxin footprint on a mammalian potassium channel. J Biol Chem 270:24776–24781.

    CAS  Google Scholar 

  • Vincent JP, Balerna M, Barhanin J, Fosset M, Lazdunski M (1980) Binding of sea anemone toxin to receptor sites associated with gating system of sodium channel in synaptic nerve endings in vitro. Proc Natl Acad Sci USA 77:1646–1650.

    CAS  Google Scholar 

  • Wang JM, Roh SH, Kim S, Lee CW, Kim JI, Swartz KJ (2004) Molecular surface of tarantula toxins interacting with voltage sensors in K(v) channels. J Gen Physiol 123:455–467.

    CAS  Google Scholar 

  • Wanke E, Restano-Cassulini R (2007) Toxins interacting with ether-a-go-go-related gene voltage-dependent potassium channels. Toxicon 49:239–248.

    CAS  Google Scholar 

  • Winterfield JR, Swartz KJ (2000) A hot spot for the interaction of gating modifier toxins with voltage-dependent ion channels. J Gen Physiol 116:637–644.

    CAS  Google Scholar 

  • Yan L, Herrington J, Goldberg E, Dulski PM, Bugianesi RM, Slaughter RS, Banerjee P, Brochu RM, Priest BT, Kaczorowski GJ, Rudy B, Garcia ML (2005) Stichodactyla helianthus peptide, a pharmacological tool for studying Kv3.2 channels. Mol Pharmacol 67:1513–1521.

    CAS  Google Scholar 

  • Yeung SY, Thompson D, Wang Z, Fedida D, Robertson B (2005) Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS:significance for CNS and biophysical studies. J Neurosci 25:8735–8745.

    CAS  Google Scholar 

  • Zhang M, Liu XS, Diochot, Lazdunski M, Tseng GN (2007) APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go-related potassium channel. Mol Pharmacol 72:259–268.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diochot, S., Lazdunski, M. (2009). Sea Anemone Toxins Affecting Potassium Channels. In: Fusetani, N., Kem, W. (eds) Marine Toxins as Research Tools. Progress in Molecular and Subcellular Biology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87895-7_4

Download citation

Publish with us

Policies and ethics