Skip to main content

Structure–Function Studies of Muscarinic Acetylcholine Receptors

  • Chapter
  • First Online:
Book cover Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

There has been great interest in the structure–function relationships of the muscarinic acetylcholine receptors (mAChRs) because these prototypical Family A/class 1 G protein-coupled receptors (GPCRs) are attractive therapeutic targets for both peripheral and central nervous system disorders. A multitude of drugs that act at the mAChRs have been identified over the years, but many of these show minimal selectivity for any one of the five mAChR subtypes over the others, which has hampered their development into therapeutics due to adverse side effects. The lack of drug specificity is primarily due to high sequence similarity in this family of receptor, especially in the orthosteric binding pocket. Thus, there remains an ongoing need for a molecular understanding of how mAChRs bind their ligands, and how selectivity in binding and activation can be achieved. Unfortunately, there remains a paucity of solved high-resolution structures of GPCRs, including the mAChRs, and thus most of our knowledge of structure–function mechanisms related to this receptor family to date has been obtained indirectly through approaches such as mutagenesis. Nonetheless, such studies have revealed a wealth of information that has led to novel insights and may be used to guide future rational drug design campaigns.

Katie Leach and John Simms contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the time of writing, the crystal structures of antagonist-bound chemokine CXCR4 and dopamine D3 receptors have been solved but not published.

References

  • Ahuja S, Hornak V, Yan EC, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16:168–175

    Article  PubMed  CAS  Google Scholar 

  • Antony J, Kellershohn K, Mohr-Andra M, Kebig A, Prilla S, Muth M, Heller E, Disingrini T, Dallanoce C, Bertoni S, Schrobang J, Trankle C, Kostenis E, Christopoulos A, Holtje HD, Barocelli E, De Amici M, Holzgrabe U, Mohr K (2009) Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J 23:442–450

    Article  PubMed  CAS  Google Scholar 

  • Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A (2007) Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J Biol Chem 282:25677–25686

    Article  PubMed  CAS  Google Scholar 

  • Avlani VA, Langmead CJ, Guida E, Wood MD, Tehan BG, Herdon HJ, Watson JM, Sexton PM, Christopoulos A (2010) Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol Pharmacol 78(1):94–104

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros JA, Weinstein H, Stuart CS (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SG, Shi L, Gether U, Javitch JA (2001) Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 276:29171–29177

    Article  PubMed  CAS  Google Scholar 

  • Bee MS, Hulme EC (2007) Functional analysis of transmembrane domain 2 of the M1 muscarinic acetylcholine receptor. J Biol Chem 282:32471–32479

    Article  PubMed  CAS  Google Scholar 

  • Birdsall NJ, Burgen AS, Hulme EC, Stockton JM, Zigmond MJ (1983) The effect of McN-A-343 on muscarinic receptors in the cerebral cortex and heart. Br J Pharmacol 78:257–259

    PubMed  CAS  Google Scholar 

  • Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol 55:778–786

    PubMed  CAS  Google Scholar 

  • Blin N, Yun J, Wess J (1995) Mapping of single amino acid residues required for selective activation of Gq/11 by the m3 muscarinic acetylcholine receptor. J Biol Chem 270:17741–17748

    Article  PubMed  CAS  Google Scholar 

  • Bluml K, Mutschler E, Wess J (1994a) Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors. J Biol Chem 269:18870–18876

    PubMed  CAS  Google Scholar 

  • Bluml K, Mutschler E, Wess J (1994b) Functional role of a cytoplasmic aromatic amino acid in muscarinic receptor-mediated activation of phospholipase C. J Biol Chem 269:11537–11541

    PubMed  CAS  Google Scholar 

  • Bluml K, Mutschler E, Wess J (1994c) Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydrolysis. J Biol Chem 269:402–405

    PubMed  CAS  Google Scholar 

  • Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem 52:3445–3448

    Article  PubMed  CAS  Google Scholar 

  • Buller S, Zlotos DP, Mohr K, Ellis J (2002) Allosteric site on muscarinic acetylcholine receptors: a single amino acid in transmembrane region 7 is critical to the subtype selectivities of caracurine V derivatives and alkane-bisammonium ligands. Mol Pharmacol 61:160–168

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Spalding TA, Hill-Eubanks D, Brann MR (1995) Structure-function of muscarinic receptor coupling to G proteins. Random saturation mutagenesis identifies a critical determinant of receptor affinity for G proteins. J Biol Chem 270:3141–3146

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Spalding TA, Brann MR (1996) Amino acid side chains that define muscarinic receptor/G-protein coupling. Studies of the third intracellular loop. J Biol Chem 271:2882–2885

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Spalding TA, Brann MR (1998) The second intracellular loop of the m5 muscarinic receptor is the switch which enables G-protein coupling. J Biol Chem 273:24322–24327

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJM, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:10978–10983

    Article  PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Clark AL, Mitchelson F (1976) The inhibitory effect of gallamine on muscarinic receptors. Br J Pharmacol 58:323–331

    PubMed  CAS  Google Scholar 

  • Cohen GB, Yang T, Robinson PR, Oprian DD (1993) Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 32:6111–6115

    Article  PubMed  CAS  Google Scholar 

  • Congreve M, Marshall F (2010) The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 159:986–996

    Article  PubMed  CAS  Google Scholar 

  • Curtis CA, Wheatley M, Bansal S, Birdsall NJ, Eveleigh P, Pedder EK, Poyner D, Hulme EC (1989) Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem 264:489–495

    PubMed  CAS  Google Scholar 

  • Disingrini T, Muth M, Dallanoce C, Barocelli E, Bertoni S, Kellershohn K, Mohr K, De Amici M, Holzgrabe U (2006) Design, synthesis, and action of oxotremorine-related hybrid-type allosteric modulators of muscarinic acetylcholine receptors. J Med Chem 49:366–372

    Article  PubMed  CAS  Google Scholar 

  • Espinoza-Fonseca LM, Trujillo-Ferrara JG (2005) Identification of multiple allosteric sites on the M1 muscarinic acetylcholine receptor. FEBS Lett 579:6726–6732

    Article  PubMed  CAS  Google Scholar 

  • Espinoza-Fonseca LM, Trujillo-Ferrara JG (2006) The existence of a second allosteric site on the M1 muscarinic acetylcholine receptor and its implications for drug design. Bioorg Med Chem Lett 16:1217–1220

    Article  PubMed  CAS  Google Scholar 

  • Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  • Gharagozloo P, Lazareno S, Popham A, Birdsall NJ (1999) Allosteric interactions of quaternary strychnine and brucine derivatives with muscarinic acetylcholine receptors. J Med Chem 42:438–445

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JA, Hulme EC, Langmead CJ, Tehan BG (2007) Roof and floor of the muscarinic binding pocket: variations in the binding modes of orthosteric ligands. Mol Pharmacol 72:1484–1496

    Article  PubMed  CAS  Google Scholar 

  • Gregory KJ, Hall NE, Tobin AB, Sexton PM, Christopoulos A (2010) Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J Biol Chem 285:7459–7474

    Article  PubMed  CAS  Google Scholar 

  • Han SJ, Hamdan FF, Kim SK, Jacobson KA, Bloodworth LM, Li B, Wess J (2005a) Identification of an agonist-induced conformational change occurring adjacent to the ligand-binding pocket of the M(3) muscarinic acetylcholine receptor. J Biol Chem 280:34849–34858

    Article  PubMed  CAS  Google Scholar 

  • Han SJ, Hamdan FF, Kim SK, Jacobson KA, Brichta L, Bloodworth LM, Li JH, Wess J (2005b) Pronounced conformational changes following agonist activation of the M(3) muscarinic acetylcholine receptor. J Biol Chem 280:24870–24879

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Hills RA, Rosser EM, Jones M, Buneman OP, Dunbar DR, Greenhill SD, Hale VA, Sharman JL, Bonner TI, Catterall WA, Davenport AP, Delagrange P, Dollery CT, Foord SM, Gutman GA, Laudet V, Neubig RR, Ohlstein EH, Olsen RW, Peters J, Pin JP, Ruffolo RR, Searls DB, Wright MW, Spedding M (2009) IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res 37:D680–D685

    Article  PubMed  CAS  Google Scholar 

  • Hill-Eubanks D, Burstein ES, Spalding TA, Brauner-Osborne H, Brann MR (1996) Structure of a G-protein-coupling domain of a muscarinic receptor predicted by random saturation mutagenesis. J Biol Chem 271:3058–3065

    Article  PubMed  CAS  Google Scholar 

  • Hogger P, Shockley MS, Lameh J, Sadee W (1995) Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors. J Biol Chem 270:7405–7410

    Article  PubMed  CAS  Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  Google Scholar 

  • Hu J, Wang Y, Zhang X, Lloyd JR, Li JH, Karpiak J, Costanzi S, Wess J (2010) Structural basis of G protein-coupled receptor-G protein interactions. Nat Chem Biol 6:541–548

    Article  PubMed  CAS  Google Scholar 

  • Huang XP, Prilla S, Mohr K, Ellis J (2005) Critical amino acid residues of the common allosteric site on the M2 muscarinic acetylcholine receptor: more similarities than differences between the structurally divergent agents gallamine and bis(ammonio)alkane-type hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide. Mol Pharmacol 68:769–778

    PubMed  CAS  Google Scholar 

  • Hulme EC, Lu ZL (1998) Scanning mutagenesis of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor. J Physiol Paris 92:269–274

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC, Lu ZL, Bee M, Curtis CA, Saldanha J (2001) The conformational switch in muscarinic acetylcholine receptors. Life Sci 68:2495–2500

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC, Lu ZL, Saldanha JW, Bee MS (2003a) Structure and activation of muscarinic acetylcholine receptors. Biochem Soc Trans 31:29–34

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC, Lu ZL, Bee MS (2003b) Scanning mutagenesis studies of the M1 muscarinic acetylcholine receptor. Receptors Channels 9:215–228

    Article  PubMed  CAS  Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Jakubik J, El-Fakahany EE, Tucek S (2000) Evidence for a tandem two-site model of ligand binding to muscarinic acetylcholine receptors. J Biol Chem 275:18836–18844

    Article  PubMed  CAS  Google Scholar 

  • Jones PG, Curtis CA, Hulme EC (1995) The function of a highly-conserved arginine residue in activation of the muscarinic M1 receptor. Eur J Pharmacol 288:251–257

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, Peterson TE, Ansari MS, Baldwin RM, Kessler RM, Deutch AY, Lah JJ, Levey AI, Lindsley CW, Conn PJ (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433

    Article  PubMed  CAS  Google Scholar 

  • Kostenis E, Gomeza J, Lerche C, Wess J (1997) Genetic analysis of receptor-Galphaq coupling selectivity. J Biol Chem 272:23675–23681

    Article  PubMed  CAS  Google Scholar 

  • Kurtenbach E, Curtis CA, Pedder EK, Aitken A, Harris AC, Hulme EC (1990) Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. J Biol Chem 265:13702–13708

    PubMed  CAS  Google Scholar 

  • Langmead CJ, Fry VA, Forbes IT, Branch CL, Christopoulos A, Wood MD, Herdon HJ (2006) Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol 69:236–246

    PubMed  CAS  Google Scholar 

  • Lanzafame AA, Sexton PM, Christopoulos A (2006) Interaction studies of multiple binding sites on m4 muscarinic acetylcholine receptors. Mol Pharmacol 70:736–746

    Article  PubMed  CAS  Google Scholar 

  • Lazareno S, Birdsall NJ (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol 48:362–378

    PubMed  CAS  Google Scholar 

  • Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol 53:573–589

    PubMed  CAS  Google Scholar 

  • Lazareno S, Popham A, Birdsall NJ (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol 58:194–207

    PubMed  CAS  Google Scholar 

  • Leach K, Loiacono RE, Felder CC, McKinzie DL, Mogg A, Shaw DB, Sexton PM, Christopoulos A (2010) Molecular mechanisms of action and in vivo validation of an M(4) muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35:855–869

    Article  PubMed  CAS  Google Scholar 

  • Leach K, Davey AE, Felder CC, Sexton PM, Christopoulos A (2011) The role of transmembrane domain 3 in the actions of orthosteric, allosteric, and atypical agonists of the M4 muscarinic acetylcholine receptor. Mol. Pharmacol. 79: 855–865

    CAS  Google Scholar 

  • Lebon G, Langmead CJ, Tehan BG, Hulme EC (2009) Mutagenic mapping suggests a novel binding mode for selective agonists of M1 muscarinic acetylcholine receptors. Mol Pharmacol 75:331–341

    Article  PubMed  CAS  Google Scholar 

  • Li B, Scarselli M, Knudsen CD, Kim SK, Jacobson KA, McMillin SM, Wess J (2007a) Rapid identification of functionally critical amino acids in a G protein-coupled receptor. Nat Methods 4:169–174

    Article  PubMed  CAS  Google Scholar 

  • Li JH, Han SJ, Hamdan FF, Kim SK, Jacobson KA, Bloodworth LM, Zhang X, Wess J (2007b) Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands. J Biol Chem 282:26284–26293

    Article  PubMed  CAS  Google Scholar 

  • Lu ZL, Hulme EC (1999) The functional topography of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor, revealed by scanning mutagenesis. J Biol Chem 274:7309–7315

    Article  PubMed  CAS  Google Scholar 

  • Lu ZL, Hulme EC (2000) A network of conserved intramolecular contacts defines the off-state of the transmembrane switch mechanism in a seven-transmembrane receptor. J Biol Chem 275:5682–5686

    Article  PubMed  CAS  Google Scholar 

  • Lu ZL, Curtis CA, Jones PG, Pavia J, Hulme EC (1997) The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Mol Pharmacol 51:234–241

    PubMed  CAS  Google Scholar 

  • Lu ZL, Saldanha JW, Hulme EC (2001) Transmembrane domains 4 and 7 of the M(1) muscarinic acetylcholine receptor are critical for ligand binding and the receptor activation switch. J Biol Chem 276:34098–34104

    Article  PubMed  CAS  Google Scholar 

  • Lu ZL, Saldanha JW, Hulme EC (2002) Seven-transmembrane receptors: crystals clarify. Trends Pharmacol Sci 23:140–146

    Article  PubMed  CAS  Google Scholar 

  • Lullmann H, Ohnesorge FK, Schauwecker GC, Wassermann O (1969) Inhibition of the actions of carbachol and DFP on guinea pig isolated atria by alkane-bis-ammonium compounds. Eur J Pharmacol 6:241–247

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA 106:15950–15955

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Lazareno S, Birdsall NJ (1995) Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. Mol Pharmacol 47:88–98

    PubMed  CAS  Google Scholar 

  • May LT, Leach K, Sexton PM, Christopoulos A (2007a) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51

    Article  PubMed  CAS  Google Scholar 

  • May LT, Avlani VA, Langmead CJ, Herdon HJ, Wood MD, Sexton PM, Christopoulos A (2007b) Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol Pharmacol 72:463–476

    Article  PubMed  CAS  Google Scholar 

  • Nawaratne V, Leach K, Suratman N, Loiacono RE, Felder CC, Armbruster BN, Roth BL, Sexton PM, Christopoulos A (2008) New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug). Mol Pharmacol 74:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Nawaratne V, Leach K, Felder CC, Sexton PM, Christopoulos A (2010) Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. J Biol Chem 285:19012–19021

    Article  Google Scholar 

  • Page KM, Curtis CA, Jones PG, Hulme EC (1995) The functional role of the binding site aspartate in muscarinic acetylcholine receptors, probed by site-directed mutagenesis. Eur J Pharmacol 289:429–437

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  PubMed  CAS  Google Scholar 

  • Prilla S, Schrobang J, Ellis J, Holtje HD, Mohr K (2006) Allosteric interactions with muscarinic acetylcholine receptors: complex role of the conserved tryptophan M2422Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity. Mol Pharmacol 70:181–193

    PubMed  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) Electron crystallography reveals the structure of metarhodopsin. EMBO J 23:3609–3620

    Article  PubMed  CAS  Google Scholar 

  • Scarselli M, Li B, Kim SK, Wess J (2007) Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J Biol Chem 282:7385–7396

    Article  PubMed  CAS  Google Scholar 

  • Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1996) Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15:3566–3578

    PubMed  CAS  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Li B, Bloodworth L, Erlenbach I, Zeng FY, Wess J (2003) Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast. Identification of point mutations that “silence” a constitutively active mutant M3 receptor and greatly impair receptor/G protein coupling. J Biol Chem 278:30248–30260

    Article  PubMed  CAS  Google Scholar 

  • Spalding TA, Birdsall NJ, Curtis CA, Hulme EC (1994) Acetylcholine mustard labels the binding site aspartate in muscarinic acetylcholine receptors. J Biol Chem 269:4092–4097

    PubMed  CAS  Google Scholar 

  • Spalding TA, Burstein ES, Henderson SC, Ducote KR, Brann MR (1998) Identification of a ligand-dependent switch within a muscarinic receptor. J Biol Chem 273:21563–21568

    Article  PubMed  CAS  Google Scholar 

  • Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol Pharmacol 61:1297–1302

    Article  PubMed  CAS  Google Scholar 

  • Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, Bradley SR, Davis RE, Brann MR, Burstein ES (2006) Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol 70:1974–1983

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld T, Mammen M, Smith JA, Wilson RD, Jasper JR (2007) A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol Pharmacol 72:291–302

    Article  PubMed  CAS  Google Scholar 

  • Stewart GD, Sexton PM, Christopoulos A (2010) Prediction of functionally selective allosteric interactions at an M3 muscarinic acetylcholine receptor mutant using Saccharomyces cerevisiae. Mol Pharmacol 78(2):205–214

    Article  PubMed  CAS  Google Scholar 

  • Stockton JM, Birdsall NJ, Burgen AS, Hulme EC (1983) Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23:551–557

    PubMed  CAS  Google Scholar 

  • Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA 100:13674–13679

    Article  PubMed  CAS  Google Scholar 

  • Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RA (2008) G protein coupling and signaling pathway activation by m1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J Pharmacol Exp Ther 327:365–374

    Article  PubMed  CAS  Google Scholar 

  • Urizar E, Claeysen S, Deupi X, Govaerts C, Costagliola S, Vassart G, Pardo L (2005) An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor. J Biol Chem 280:17135–17141

    Article  PubMed  CAS  Google Scholar 

  • Valant C, Gregory KJ, Hall NE, Scammells PJ, Lew MJ, Sexton PM, Christopoulos A (2008) A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J Biol Chem 283:29312–29321

    Article  PubMed  CAS  Google Scholar 

  • Voigtlander U, Johren K, Mohr M, Raasch A, Trankle C, Buller S, Ellis J, Holtje HD, Mohr K (2003) Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors. Mol Pharmacol 64:21–31

    Article  PubMed  Google Scholar 

  • Waelbroeck M (1994) Identification of drugs competing with d-tubocurarine for an allosteric site on cardiac muscarinic receptors. Mol Pharmacol 46:685–692

    PubMed  CAS  Google Scholar 

  • Ward SD, Curtis CA, Hulme EC (1999) Alanine-scanning mutagenesis of transmembrane domain 6 of the M(1) muscarinic acetylcholine receptor suggests that Tyr381 plays key roles in receptor function. Mol Pharmacol 56:1031–1041

    PubMed  CAS  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Gdula D, Brann MR (1991) Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EMBO J 10:3729–3734

    PubMed  CAS  Google Scholar 

  • Wess J, Maggio R, Palmer JR, Vogel Z (1992) Role of conserved threonine and tyrosine residues in acetylcholine binding and muscarinic receptor activation. A study with m3 muscarinic receptor point mutants. J Biol Chem 267:19313–19319

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work shown from the authors’ laboratory is funded by Program Grant No. 519461 of the National Health and Medical Research Council (NHMRC) of Australia. AC is a Senior, and PMS a Principal, Research Fellow of the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Christopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leach, K., Simms, J., Sexton, P.M., Christopoulos, A. (2012). Structure–Function Studies of Muscarinic Acetylcholine Receptors. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_2

Download citation

Publish with us

Policies and ethics