Skip to main content

Mechanistic Aspects of COX-2 Expression in Colorectal Neoplasia

  • Chapter
  • First Online:
Book cover Prospects for Chemoprevention of Colorectal Neoplasia

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 191))

Abstract

The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states and a large amount of evidence has demonstrated constitutive COX-2 expression to be a contributing factor promoting colorectal cancer (CRC). Various genetic, epigenetic, and inflammatory pathways have been identified to be involved in the etiology and development of CRC. Alteration in these pathways can influence COX-2 expression at multiple stages of colon carcinogenesis allowing for elevated prostanoid biosynthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the post-transcriptional level through various RNA sequence elements present within the mRNA 3′ untranslated region (3′UTR). A conserved AU-rich element (ARE) functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. Specific microRNAs (miRNAs) bind regions within the COX-2 3′UTR and control COX-2 expression. In this chapter, we discuss novel insights in the mechanisms of altered post-transcriptional regulation of COX-2 in CRC and how this knowledge may be used to develop novel strategies for cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRC:

Colorectal cancer

CV:

Cardiovascular

CIN:

Chromosomal instability

APC:

Adenomatous polyposis coli

FAP:

Familial adenomatous polyposis

EGF:

Epidermal growth factor

TGF:

Transforming growth factor

COX:

Cyclooxygenase

PG:

Prostaglandin

(TX)A2 :

Thromboxane

PGI2 :

Prostacyclin

GI:

Gastrointestinal

NSAIDs:

Nonsteroidal anti-inflammatory drugs

mPGES:

Microsomal Prostaglandin E Synthase

15-PGDH:

15-hydroxyprostaglandin dehydrogenase

PPAR:

Peroxisome proliferator-activated receptor

AU:

Rich elements (AREs)

miRNAs:

MicroRNAs

HuR:

Hu antigen R

TIA-1:

T cell intracellular antigen 1

RBM3:

RNA-binding motif protein 3

References

  • Abdelmohsen K, Gorospe M (2010) Post-transcriptional regulation of cancer traits by HuR. Wiley Interdisc Rev RNA 1:214–229

    CAS  Google Scholar 

  • Ahnen DJ (2011) The American college of gastroenterology emily couric lecture–the adenoma-carcinoma sequence revisited: Has the era of genetic tailoring finally arrived? Am J Gastroenterol 106:190–198

    PubMed  Google Scholar 

  • Akao Y, Nakagawa Y, Naoe T (2006) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16:845–850

    CAS  PubMed  Google Scholar 

  • Akao Y, Nakagawa Y, Naoe T (2007) MicroRNA-143 and -145 in colon cancer. DNA Cell Biol 26:311–320

    CAS  PubMed  Google Scholar 

  • Ali IU, Luke BT, Dean M et al (2005) Allellic variants in regulatory regions of cyclooxygenase-2: association with advanced colorectal adenoma. Br J Cancer 93:953–959

    CAS  PubMed  Google Scholar 

  • Anant S, Houchen CW, Pawar V et al (2010) Role of RNA-binding proteins in colorectal carcinogenesis. Curr Colorectal Cancer Rep 6:68–73

    PubMed  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the tao of RNA triage. Trends Biochem Sci 33:141–150

    CAS  PubMed  Google Scholar 

  • Araki Y, Okamura S, Hussain SP et al (2003) Regulation of cyclooxygenase-2 expression by the wnt and ras pathways. Cancer Res 63:728–734

    CAS  PubMed  Google Scholar 

  • Atkin WS, Edwards R, Kralj-Hans I et al (2010) Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. Lancet 375:1624–1633

    PubMed  Google Scholar 

  • Backlund MG, Mann JR, Holla VR et al (2005) 15-hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem 280:3217–3223

    CAS  PubMed  Google Scholar 

  • Bakheet T, Williams BR, Khabar KS (2006) ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 34:D111–D114

    CAS  PubMed  Google Scholar 

  • Bandres E, Cubedo E, Agirre X et al (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29

    CAS  PubMed  Google Scholar 

  • Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: Are there unifying principles? Nucleic Acids Res 33:7138–7150

    CAS  PubMed  Google Scholar 

  • Bazan NG, Lukiw WJ (2002) Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1beta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells. J Biol Chem 277:30359–30367

    CAS  PubMed  Google Scholar 

  • Bertagnolli MM, Eagle CJ, Zauber AG et al (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355:873–884

    CAS  PubMed  Google Scholar 

  • Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58:266–277

    CAS  PubMed  Google Scholar 

  • Briata P, Ilengo C, Corte G et al (2003) The wnt/beta-catenin → pitx2 pathway controls the turnover of pitx2 and other unstable mrnas. Mol Cell 12:1201–1211

    CAS  PubMed  Google Scholar 

  • Bruno A, Di Francesco L, Coletta I et al (2010) Effects of af3442 [n-(9-ethyl-9 h-carbazol-3-yl)-2-(trifluoromethyl)benzamide], a novel inhibitor of human microsomal prostaglandin e synthase-1, on prostanoid biosynthesis in human monocytes in vitro. Biochem Pharmacol 79:974–981

    CAS  PubMed  Google Scholar 

  • Buchanan FG, DuBois RN (2006) Connecting COX-2 and wnt in cancer. Cancer Cell 9:6–8

    CAS  PubMed  Google Scholar 

  • Buchanan FG, Holla V, Katkuri S et al (2007) Targeting cyclooxygenase-2 and the epidermal growth factor receptor for the prevention and treatment of intestinal cancer. Cancer Res 67:9380–9388

    CAS  PubMed  Google Scholar 

  • Burn J, Bishop DT, Chapman PD et al (2011) A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis. Cancer Prev Res 4:655–665

    CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia. Proc Nat Acad Sci USA 99:15524–15529

    CAS  PubMed  Google Scholar 

  • Campa D, Zienolddiny S, Maggini V et al (2004) Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 25:229–235

    CAS  PubMed  Google Scholar 

  • Cao Y, Prescott SM (2002) Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 90:279–286

    Google Scholar 

  • Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-a production by tristetraprolin. Science 281:1001–1005

    CAS  PubMed  Google Scholar 

  • Carballo E, Lai WS, Blackshear PJ (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95:1891–1899

    CAS  PubMed  Google Scholar 

  • Castells A, Paya A, Alenda C et al (2006) Cyclooxygenase 2 expression in colorectal cancer with DNA mismatch repair deficiency. Clin Cancer Res 12:1686–1692

    CAS  PubMed  Google Scholar 

  • Cha YI, DuBois RN (2007) NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med 58:239–252

    CAS  PubMed  Google Scholar 

  • Chakrabarty A, Tranguch S, Daikoku T et al (2007) MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Nat Acad Sci USA 104:15144–15149

    CAS  PubMed  Google Scholar 

  • Chan AT, Ogino S, Fuchs CS (2007) Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 356:2131–2142

    CAS  PubMed  Google Scholar 

  • Cheadle C, Fan J, Cho-Chung YS et al (2005) Control of gene expression during t cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics 6:75

    PubMed  Google Scholar 

  • Chen X, Guo X, Zhang H et al (2009) Role of miR-143 targeting kras in colorectal tumorigenesis. Oncogene 28:1385–1392

    CAS  PubMed  Google Scholar 

  • Chulada PC, Thompson MB, Mahler JF et al (2000) Genetic disruption of ptgs-1, as well as ptgs-2, reduces intestinal tumorigenesis in min mice. Cancer Res 60:4705–4708

    CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M et al (2005) MiR-15 and miR-16 induce apoptosis by targeting bcl2. Proc Nat Acad Sci USA 102:13944–13949

    CAS  PubMed  Google Scholar 

  • Cok SJ, Morrison AR (2001) The 3′-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem 276:23179–23185

    CAS  PubMed  Google Scholar 

  • Cordes KR, Sheehy NT, White MP et al (2009) MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710

    CAS  PubMed  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    CAS  PubMed  Google Scholar 

  • Cummins JM, He Y, Leary RJ et al (2006) The colorectal micrornaome. Proc Nat Acad Sci USA 103:3687–3692

    CAS  PubMed  Google Scholar 

  • Dai Y, Wang WH (2010) Peroxisome proliferator-activated receptor gamma and colorectal cancer. World J Gastrointest Oncol 2:159–164

    PubMed  Google Scholar 

  • Dimberg J, Hugander A, Sirsjo A et al (2001) Enhanced expression of cyclooxygenase-2 and nuclear beta-catenin are related to mutations in the APC gene in human colorectal cancer. Anticancer Res 21:911–915

    CAS  PubMed  Google Scholar 

  • Dixon DA (2003) Regulation of COX-2 expression in human cancer. Prog Exp Tumor Res 37:52–71

    CAS  PubMed  Google Scholar 

  • Dixon DA, Balch GC, Kedersha N et al (2003) Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J Exp Med 198:475–481

    CAS  PubMed  Google Scholar 

  • Dixon DA, Kaplan CD, McIntyre TM et al (2000) Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J Biol Chem 275:11750–11757

    CAS  PubMed  Google Scholar 

  • Dixon DA, Tolley ND, King PH et al (2001) Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 108:1657–1665

    CAS  PubMed  Google Scholar 

  • Dixon DA, Tolley ND, Bemis-Standoli K et al (2006) Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J Clin Invest 116:2727–2738

    CAS  PubMed  Google Scholar 

  • Dohner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910–1916

    CAS  PubMed  Google Scholar 

  • Dresios J, Aschrafi A, Owens GC et al (2005) Cold stress-induced protein RBM3 binds 60s ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Nat Acad Sci USA 102:1865–1870

    CAS  PubMed  Google Scholar 

  • Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62:2447–2454

    CAS  PubMed  Google Scholar 

  • Eberhart CE, Coffey RJ, Radhika A et al (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188

    CAS  PubMed  Google Scholar 

  • Elander N, Ungerback J, Olsson H et al (2008) Genetic deletion of mPGES-1 accelerates intestinal tumorigenesis in apc(min/+) mice. Biochem Biophys Res Commun 372:249–253

    CAS  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    CAS  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    CAS  PubMed  Google Scholar 

  • Ferguson HR, Wild CP, Anderson LA et al (2008) Cyclooxygenase-2 and inducible nitric oxide synthase gene polymorphisms and risk of reflux esophagitis, barrett’s esophagus, and esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 17:727–731

    CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 9:102–114

    CAS  PubMed  Google Scholar 

  • Franks TM, Lykke-Andersen J (2007) TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev 21:719–735

    CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    CAS  PubMed  Google Scholar 

  • Garcia Rodriguez LA, Tacconelli S, Patrignani P (2008) Role of dose potency in the prediction of risk of myocardial infarction associated with nonsteroidal anti-inflammatory drugs in the general population. J Am Coll Cardiol 52:1628–1636

    PubMed  Google Scholar 

  • Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126

    CAS  PubMed  Google Scholar 

  • Giardiello FM, Casero RA Jr, Hamilton SR et al (2004) Prostanoids, ornithine decarboxylase, and polyamines in primary chemoprevention of familial adenomatous polyposis. Gastroenterology 126:425–431

    CAS  PubMed  Google Scholar 

  • Gong Z, Bostick RM, Xie D et al (2009) Genetic polymorphisms in the cyclooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma. Int J Colorectal Dis 24:647–654

    PubMed  Google Scholar 

  • Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135:1079–1099

    CAS  PubMed  Google Scholar 

  • Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116:4–15

    CAS  PubMed  Google Scholar 

  • Gruber AR, Fallmann J, Kratochvill F et al (2010) Aresite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res 39:D66–D69

    PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    CAS  PubMed  Google Scholar 

  • Hall-Pogar T, Zhang H, Tian B et al (2005) Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res 33:2565–2579

    CAS  PubMed  Google Scholar 

  • Hao Y, Gu X, Zhao Y et al (2011) Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila) 4:1073–1083

    CAS  Google Scholar 

  • Harper KA, Tyson-Capper AJ (2008) Complexity of COX-2 gene regulation. Biochem Soc Trans 36:543–545

    CAS  PubMed  Google Scholar 

  • Hernandez GL, Volpert OV, Iniguez MA et al (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin a: roles of the nuclear factor of activated t cells and cyclooxygenase 2. J Exp Med 193:607–620

    CAS  PubMed  Google Scholar 

  • Holla VR, Backlund MG, Yang P et al (2008) Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prev Res 1:93–99

    CAS  Google Scholar 

  • Howe LR, Subbaramaiah K, Chung WJ et al (1999) Transcriptional activation of cyclooxygenase-2 in wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59:1572–1577

    CAS  PubMed  Google Scholar 

  • Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988–993

    CAS  PubMed  Google Scholar 

  • Jakobsson PJ, Thoren S, Morgenstern R et al (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Nat Acad Sci USA 96:7220–7225

    CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  • Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    CAS  PubMed  Google Scholar 

  • Kaidi A, Qualtrough D, Williams AC et al (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66:6683–6691

    CAS  PubMed  Google Scholar 

  • Kanies CL, Smith JJ, Kis C et al (2008) Oncogenic ras and transforming growth factor-beta synergistically regulate AU-rich element-containing mRNAs during epithelial to mesenchymal transition. Mol Cancer Res 6:1124–1136

    CAS  PubMed  Google Scholar 

  • Karnes WE, Shattuck-Brandt R, Burgart LJ et al (1998) Reduced COX-2 protein in colorectal cancer with defective mismatch repair. Cancer Res 58:5473–5477

    CAS  PubMed  Google Scholar 

  • Kedersha N, Stoecklin G, Ayodele M et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    CAS  PubMed  Google Scholar 

  • Keene J (1999) Why is Hu where? Shuttling of early-response messenger RNA subsets. Proc Nat Acad Sci USA 96:5–7

    CAS  PubMed  Google Scholar 

  • Kim Y, Fischer SM (1998) Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of ccaat/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J Biol Chem 273:27686–27694

    CAS  PubMed  Google Scholar 

  • Kojima M, Morisaki T, Izuhara K et al (2000) Lipopolysaccharide increases cyclo-oxygenase-2 expression in a colon carcinoma cell line through nuclear factor-kappa B activation. Oncogene 19:1225–1231

    CAS  PubMed  Google Scholar 

  • Kondo Y, Issa JP (2004) Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 23:29–39

    CAS  PubMed  Google Scholar 

  • Kudo I, Murakami M (2005) Prostaglandin e synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol 38:633–638

    CAS  PubMed  Google Scholar 

  • Kulendran M, Stebbing JF, Marks CG et al (2011) Predictive and prognostic factors in colorectal cancer: a personalized approach. Cancers 3:1622–1638

    CAS  Google Scholar 

  • Kutchera W, Jones DA, Matsunami N et al (1996) Prostaglandin synthase 2 is abnormally expressed in human colon cancer: evidence for a transcriptional effect. Proc Nat Acad Sci USA 93:4816–4820

    CAS  PubMed  Google Scholar 

  • Lai WS, Carballo E, Strum JR et al (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19:4311–4323

    CAS  PubMed  Google Scholar 

  • Langsenlehner U, Yazdani-Biuki B, Eder T et al (2006) The cyclooxygenase-2 (PTGS2) 8473T > C polymorphism is associated with breast cancer risk. Clin Cancer Res 12:1392–1394

    CAS  PubMed  Google Scholar 

  • Liu Q, Fu H, Sun F et al (2008) Mir-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36:5391–5404

    CAS  PubMed  Google Scholar 

  • Lopez de Silanes I, Galban S, Martindale JL et al (2005a) Identification and functional outcome of mRNAs associated with RNA-binding protein tia-1. Mol Cell Biol 25:9520–9531

    CAS  PubMed  Google Scholar 

  • Lopez de Silanes I, Lal A, Gorospe M (2005b) HuR: post-transcriptional paths to malignancy. RNA Biol 2:11–13

    CAS  PubMed  Google Scholar 

  • Lopez de Silanes I, Quesada MP, Esteller M (2007) Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cell Oncol 29:1–17

    CAS  PubMed  Google Scholar 

  • Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460

    CAS  PubMed  Google Scholar 

  • Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    CAS  PubMed  Google Scholar 

  • Masso Gonzalez EL, Patrignani P, Tacconelli S et al (2010) Variability among nonsteroidal antiinflammatory drugs in risk of upper gastrointestinal bleeding. Arthritis Rheum 62:1592–1601

    PubMed  Google Scholar 

  • Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    CAS  PubMed  Google Scholar 

  • Meade EA, McIntyre TM, Zimmerman GA et al (1999) Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells. J Biol Chem 274:8328–8334

    CAS  PubMed  Google Scholar 

  • Mei JM, Hord NG, Winterstein DF et al (1999) Differential expression of prostaglandin endoperoxide H synthase-2 and formation of activated beta-catenin-lef-1 transcription complex in mouse colonic epithelial cells contrasting in APC. Carcinogenesis 20:737–740

    CAS  PubMed  Google Scholar 

  • Meisner NC, Hintersteiner M, Mueller K et al (2007) Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat Chem Biol 3:508–515

    CAS  PubMed  Google Scholar 

  • Michael MZ, OC SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    CAS  PubMed  Google Scholar 

  • Miller C, Zhang M, He Y et al (1998) Transcriptional induction of cyclooxygenase-2 gene by okadaic acid inhibition of phosphatase activity in human chondrocytes: co-stimulation of AP-1 and cre nuclear binding proteins. J Cell Biochem 69:392–413

    CAS  PubMed  Google Scholar 

  • Ming XF, Stoecklin G, Lu M et al (2001) Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 21:5778–5789

    CAS  PubMed  Google Scholar 

  • Moore AE, Young LE, Dixon DA (2011) A common single-nucleotide polymorphism in cyclooxygenase-2 disrupts microRNA-mediated regulation. Oncogene (in press)

    Google Scholar 

  • Moran AE, Hunt DH, Javid SH et al (2004) APC deficiency is associated with increased EGFR activity in the intestinal enterocytes and adenomas of C57Bl/6j-Min/+ mice. J Biol Chem 279:43261–43272

    CAS  PubMed  Google Scholar 

  • Moser AR, Luongo C, Gould KA et al (1995) APCmin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 31A:1061–1064

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Houchen CW, Kennedy S et al (2003) Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell 11:113–126

    CAS  PubMed  Google Scholar 

  • Murakami M, Naraba H, Tanioka T et al (2000) Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 275:32783–32792

    CAS  PubMed  Google Scholar 

  • Murmu N, Jung J, Mukhopadhyay D et al (2004) Dynamic antagonism between RNA-binding protein cugbp2 and cyclooxygenase-2-mediated prostaglandin E2 in radiation damage. Proc Nat Acad Sci USA 101:13873–13878

    CAS  PubMed  Google Scholar 

  • Myung SJ, Rerko RM, Yan M et al (2006) 15-hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Nat Acad Sci USA 103:12098–12102

    CAS  PubMed  Google Scholar 

  • Nakanishi M, Gokhale V, Meuillet EJ et al (2010) mPGES-1 as a target for cancer suppression: a comprehensive invited review “phospholipase A2 and lipid mediators”. Biochimie 92:660–664

    CAS  PubMed  Google Scholar 

  • Nakanishi M, Montrose DC, Clark P et al (2008) Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res 68:3251–3259

    CAS  PubMed  Google Scholar 

  • Newbury SF, Muhlemann O, Stoecklin G (2006) Turnover in the alps: an mRNA perspective. Workshops on mechanisms and regulation of mRNA turnover. EMBO Rep 7:143–148

    CAS  PubMed  Google Scholar 

  • Nomura T, Lu R, Pucci ML et al (2004) The two-step model of prostaglandin signal termination: in vitro reconstitution with the prostaglandin transporter and prostaglandin 15 dehydrogenase. Mol Pharmacol 65:973–978

    CAS  PubMed  Google Scholar 

  • O’Hara SP, Mott JL, Splinter PL et al (2009) MicroRNAs: key modulators of post-transcriptional gene expression. Gastroenterology 136:17–25

    PubMed  Google Scholar 

  • Oshima M, Dinchuk JE, Kargman SL et al (1996) Suppression of intestinal polyposis in APC∆716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809

    CAS  PubMed  Google Scholar 

  • Ozhan G, Yanar TH, Ertekin C et al (2010) The effect of genetic polymorphisms of cyclooxygenase 2 on acute pancreatitis in Turkey. Pancreas 39:371–376

    PubMed  Google Scholar 

  • Patrono C, Patrignani P, García Rodríguez LA (2001) Cyclooxygenase-selective inhibition of prostanoid formation: transducing biochemical selectivity into clinical read-outs. J Clin Invest 108:7–13

    CAS  PubMed  Google Scholar 

  • Patrono C, Baigent C, Hirsh J et al (2008) Antiplatelet drugs: American college of chest physicians evidence-based clinical practice guidelines. Chest 133:199S–233S (8th edn)

    CAS  PubMed  Google Scholar 

  • Peddareddigari VG, Wang D, Dubois RN (2011) The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron 3:149–166

    Google Scholar 

  • Phillips K, Kedersha N, Shen L et al (2004) Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and inflammatory arthritis. Proc Nat Acad Sci USA 101:2011–2016

    CAS  PubMed  Google Scholar 

  • Prescott SM (2000) Is cyclooxygenase-2 the alpha and the omega in cancer? J Clin Invest 105:1511–1513

    CAS  PubMed  Google Scholar 

  • Reid G, Wielinga P, Zelcer N et al (2003) The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Nat Acad Sci USA 100:9244–9249

    CAS  PubMed  Google Scholar 

  • Roberts RB, Min L, Washington MK et al (2002) Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Nat Acad Sci USA 99:1521–1526

    CAS  PubMed  Google Scholar 

  • Rothwell PM, Fowkes FG, Belch JF et al (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    CAS  PubMed  Google Scholar 

  • Rothwell PM, Wilson M, Elwin CE et al (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376:1741–1750

    CAS  PubMed  Google Scholar 

  • Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402

    CAS  PubMed  Google Scholar 

  • Sampey AV, Monrad S, Crofford LJ (2005) Microsomal prostaglandin E synthase-1: the inducible synthase for prostaglandin E2. Arthritis Res Ther 7:114–117

    CAS  PubMed  Google Scholar 

  • Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59:207–224

    CAS  PubMed  Google Scholar 

  • Sanchez-Beato M, Sanchez-Aguilera A, Piris MA (2003) Cell cycle deregulation in B-cell lymphomas. Blood 101:1220–1235

    CAS  PubMed  Google Scholar 

  • Sanduja S, Blanco FF, Dixon DA (2010) The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdisc Rev RNA 2:42–57

    Google Scholar 

  • Sawaoka H, Dixon DA, Oates JA et al (2003) Tristetrapolin binds to the 3′ untranslated region of cyclooxygenase-2 mRNA: a polyadenylation variant in a cancer cell line lacks the binding site. J Biol Chem 278:13928–13935

    CAS  PubMed  Google Scholar 

  • Schmedtje JF Jr, Ji YS, Liu WL et al (1997) Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272:601–608

    CAS  PubMed  Google Scholar 

  • Shanmugam N, Reddy MA, Natarajan R (2008) Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by s100b, a ligand of the receptor for advanced glycation end products. J Biol Chem 283:36221–36233

    CAS  PubMed  Google Scholar 

  • Shao J, Sheng H, Inoue H et al (2000) Regulation of constitutive cyclooxygenase-2 expression in colon carcinoma cells. J Biol Chem 275:33951–33956

    CAS  PubMed  Google Scholar 

  • Shen J, Gammon MD, Terry MB et al (2006) Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk. Breast Cancer Res 8:R71–R80

    PubMed  Google Scholar 

  • Sheng H, Shao J, Dixon DA et al (2000) Transforming growth factor-beta1 enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem 275:6628–6635

    CAS  PubMed  Google Scholar 

  • Siezen CL, van Leeuwen AI, Kram NR et al (2005) Colorectal adenoma risk is modified by the interplay between polymorphisms in arachidonic acid pathway genes and fish consumption. Carcinogenesis 26:449–457

    CAS  PubMed  Google Scholar 

  • Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    CAS  PubMed  Google Scholar 

  • Singer II, Kawka DW, Schloemann S et al (1998) Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115:297–306

    CAS  PubMed  Google Scholar 

  • Slaby O, Svoboda M, Fabian P et al (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402

    CAS  PubMed  Google Scholar 

  • Song T, Zhang X, Wang C et al (2011) Expression of miR-143 reduces growth and migration of human bladder carcinoma cells by targeting cyclooxygenase-2. Asian Pac J Cancer Prev 12:929–933

    PubMed  Google Scholar 

  • Steinbach G, Lynch PM, Phillips RK et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    CAS  PubMed  Google Scholar 

  • Strillacci A, Griffoni C, Sansone P et al (2009) Mir-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 315:1439–1447

    CAS  PubMed  Google Scholar 

  • Su H, Yang JR, Xu T et al (2009) MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69:1135–1142

    CAS  PubMed  Google Scholar 

  • Subbaramaiah K, Cole PA, Dannenberg AJ (2002a) Retinoids and carnosol suppress cyclooxygenase-2 transcription by creb-binding protein/p300-dependent and -independent mechanisms. Cancer Res 62:2522–2530

    CAS  PubMed  Google Scholar 

  • Subbaramaiah K, Norton L, Gerald W et al (2002b) Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer. Evidence for involvement of AP-1 and PEA3. J Biol Chem 277:18649–18657

    CAS  PubMed  Google Scholar 

  • Sureban SM, Murmu N, Rodriguez P et al (2007) Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology 132:1055–1065

    CAS  PubMed  Google Scholar 

  • Sureban SM, Ramalingam S, Natarajan G et al (2008) Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe. Oncogene 27:4544–4556

    CAS  PubMed  Google Scholar 

  • Takagi T, Iio A, Nakagawa Y et al (2009) Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 77:12–21

    CAS  PubMed  Google Scholar 

  • Tian Q, Streuli M, Saito H et al (1991) A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67:629–639

    CAS  PubMed  Google Scholar 

  • Toyota M, Shen L, Ohe-Toyota M et al (2000) Aberrant methylation of the cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res 60:4044–4048

    CAS  PubMed  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232–523

    CAS  PubMed  Google Scholar 

  • Varambally S, Cao Q, Mani RS et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    CAS  PubMed  Google Scholar 

  • Vogel U, Christensen J, Wallin H et al (2008) Polymorphisms in genes involved in the inflammatory response and interaction with NSAID use or smoking in relation to lung cancer risk in a prospective study. Mutat Res 639:89–100

    CAS  PubMed  Google Scholar 

  • Voltz R (2002) Paraneoplastic neurological syndromes: an update on diagnosis, pathogenesis, and therapy. Lancet Neurol 1:294–305

    PubMed  Google Scholar 

  • Wang D, DuBois RN (2008) Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 267:197–203

    CAS  PubMed  Google Scholar 

  • Wang D, Dubois RN (2010a) Eicosanoids and cancer. Nat Rev Cancer 10:181–193

    CAS  PubMed  Google Scholar 

  • Wang D, Dubois RN (2010b) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29:781–788

    CAS  PubMed  Google Scholar 

  • Wang HJ, Ruan HJ, He XJ et al (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 46:2295–2303

    CAS  PubMed  Google Scholar 

  • Wang M, Song WL, Cheng Y et al (2008) Microsomal prostaglandin E synthase-1 inhibition in cardiovascular inflammatory disease. J Intern Med 263:500–505

    CAS  PubMed  Google Scholar 

  • Wang D, Wang H, Shi Q et al (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6:285–295

    CAS  PubMed  Google Scholar 

  • Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43:1529–1544

    CAS  PubMed  Google Scholar 

  • Wiercinska-Drapalo A, Flisiak R, Prokopowicz D (1999) Effects of ulcerative colitis activity on plasma and mucosal prostaglandin E2 concentration. Prostaglandins Other Lipid Mediat 58:159–165

    CAS  PubMed  Google Scholar 

  • Wu BL, Xu LY, Du ZP et al (2011) MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. World J Gastroenterol 17:79–88

    CAS  PubMed  Google Scholar 

  • Wu WK, Sung JJ, Lee CW et al (2010) Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett 295:7–16

    CAS  PubMed  Google Scholar 

  • Yan M, Rerko RM, Platzer P et al (2004) 15-hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a tgf-beta-induced suppressor of human gastrointestinal cancers. Proc Nat Acad Sci USA 101:17468–17473

    CAS  PubMed  Google Scholar 

  • Yang X, Wang W, Fan J et al (2004) Prostaglandin a2-mediated stabilization of p21 mRNA through an erk-dependent pathway requiring the RNA-binding protein HuR. J Biol Chem 279:49298–49306

    CAS  PubMed  Google Scholar 

  • Young LE, Dixon DA (2010) Post-transcriptional regulation of cyclooxygenase 2 expression in colorectal cancer. Curr Colorectal Cancer Rep 6:60–67

    PubMed  Google Scholar 

  • Young LE, Moore AE, Sokol L et al. (2011) The mRNA stability factor HuR inhibits microRNA-16 targeting of cyclooxygenase-2. Mol Cancer Res (in press)

    Google Scholar 

  • Young LE, Sanduja S, Bemis-Standoli K et al (2009) The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 136:1669–1679

    CAS  PubMed  Google Scholar 

  • Zhu T, Gobeil F, Vazquez-Tello A et al (2006) Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Can J Physiol Pharmacol 84:377–391

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01 CA134609 to D.A. Dixon) and American Cancer Society (RSG-06-122-01-CNE to D.A. Dixon). We apologize to our colleagues for not being able to reference all primary work due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan A. Dixon or Paola Patrignani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dixon, D.A., Blanco, F.F., Bruno, A., Patrignani, P. (2013). Mechanistic Aspects of COX-2 Expression in Colorectal Neoplasia. In: Chan, A., Detering, E. (eds) Prospects for Chemoprevention of Colorectal Neoplasia. Recent Results in Cancer Research, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30331-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30331-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30330-2

  • Online ISBN: 978-3-642-30331-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics