Skip to main content

A Look at Receptor Efficacy. From the Signalling Network of the Cell to the Intramolecular Motion of the Receptor

  • Chapter
Book cover The Pharmacology of Functional, Biochemical, and Recombinant Receptor Systems

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 148))

Abstract

In this article, we examine the multiple connotations of the idea of ligand efficacy, from the macroscopic complexity of the signalling network in the living cell to the microscopic complexity of the single-protein macromolecule. Our analysis consists of two parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adie EJ, Milligan G (1994) Regulation of basal adenylyl-cyclase activity in NG10815 cells transfected to express the human β 2-adrenoceptor. Evidence for empty receptor stimulation of the adenylyl-cyclase cascade. Biochem J 303:803–808

    PubMed  CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland Publishing, Inc, New York, London

    Google Scholar 

  • Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of protein. Proteins 17:412–425

    Article  PubMed  CAS  Google Scholar 

  • Ariëns EJ (1954) Affinity and intrinsic activity in the theory of competitive inhibition. Arch Int Pharmacodyn Ther 99:32–49

    PubMed  Google Scholar 

  • Ariëns EJ, Simonis AM, Van Rossum JM (1964) Drug receptor interaction: interaction of one or more drugs with one receptor system. In Ariëns EJ (ed) Molecular pharmacology: the mode of action of biologically active compounds. Academic Press, New York, pp 119–286

    Google Scholar 

  • Baldwin JM (1994) Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 6:180–90

    Article  PubMed  CAS  Google Scholar 

  • Barker EL, Westphal RS, Schmidt D, Sanders-Bush E (1994). Constitutively active 5-hydroxytryptamine 2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem 269:11687–11690

    PubMed  CAS  Google Scholar 

  • Birnbaumer L (1990) G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30:675–705

    Article  PubMed  CAS  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond (Biol Sci) 220:141–162

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9:134–142

    Article  PubMed  CAS  Google Scholar 

  • Brooks CL, Karplus M, Pettitt BM (1987) Proteins: a theoretical perspective of dynamics, structure and thermodynamics. In Prigogine I, Rice SA (series eds) Advances in Chemical Physics vol 71, John Wiley and Sons, New York

    Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and energy landscape of protein folding: a synthesis. Proteins: Structure, function and genetics 21:167–195

    Article  CAS  Google Scholar 

  • Chidiac P, Nouet S, Bouvier M (1996) Agonist-induced modulation of inverse agonist efficacy at the β2-adrenergic receptor. Mol Pharmacol 50:662–669

    PubMed  CAS  Google Scholar 

  • Cho W, Taylor LP, Akil H (1996) Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction. Mol Pharmacol 50:1338–1345

    PubMed  CAS  Google Scholar 

  • Clark AJ (1933) The mode of action of drugs on cells. Edward Arnold, London

    Google Scholar 

  • Clark AJ (1937) General pharmacology. In: Haffter’s Handbuch der Exp. Pharmacol. Springer, Berlin

    Google Scholar 

  • Cohen DP, Thaw CN, Varma A, Gershengorn MC, Nussenzveig DR (1997) Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity. Endocrinology 138:1400–1405

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D (1973) The relationship between classical and cooperative drug action. In: Rang HP (ed.) Drug receptors. University Park Press, Baltimore, pp 149–182

    Google Scholar 

  • Colquhoun D (1987) Affinity, efficacy, and receptor classification: is the classical theory still useful? In: Black JW, Jenkinson DH, Gerskowitch VP (eds) Perspectives on receptor classification. Alan R Liss, New York, pp 103–114

    Google Scholar 

  • Colquhoun D, Hawkes AG (1983) The principles of stochastic interpretation of ion-channel mechanisms. In Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, pp 135–175

    Chapter  Google Scholar 

  • Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86:7321–7325

    Article  PubMed  CAS  Google Scholar 

  • Costa T, Lang J, Gless C, Herz A (1990) Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: specific regulation by antagonists and sodium ions. Mol Pharmacol 37:383–394

    PubMed  CAS  Google Scholar 

  • Costa T, Ogino Y, Munson PJ, Onaran HO, Rodbard D (1992) Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol Pharmacol 41:549–560

    PubMed  CAS  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate-cyclase-coupled β-adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  • Del Castillo J, Katz B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond (Biol Sci) 146:369–381

    Article  Google Scholar 

  • Denbigh K (1951) The thermodynamics of the steady-state. Methuen, London; Welry, New York

    Google Scholar 

  • Denbigh K (1968) The principle of chemical equilibrium. Cambridge University Press, London, New York

    Google Scholar 

  • Dohlman HG, Bouvier M, Benovic JL, Caron MG, Lefkowitz RJ (1987) The multiple membrane spanning topography of the β-adrenergic receptor. Localization of the sites of binding, glycosylation and regulatory phosphorylation by limited proteolysis. J Biol Chem 262:14282–14288

    PubMed  CAS  Google Scholar 

  • Ehlert FJ (1985) The relationship between muscarinic receptor occupancy and adenylate-cyclase inhibition in the rabbit myocardium. Mol Pharmacol 28:410–421

    PubMed  CAS  Google Scholar 

  • Ferguson SS, Zhang J, Barak LS, Caron MG (1998) Role of β-arrestins in the intracellular trafficking of G-protein-coupled receptors. Adv Pharmacol 42:420–424

    Article  PubMed  CAS  Google Scholar 

  • Ferris HA, Carroll RE, Rasenick MM, Benya RV (1997) Constitutive activation of the gastrin-releasing peptide receptor expressed by the nonmalignant human colon epithelial cell line NCM460. Clin Invest 100:2530–2537

    Article  CAS  Google Scholar 

  • Frauenfelder H (1995) Proteins-paradigms of complex systems. Experientia 51:200–203

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Parak F, Young RD (1988) Conformational substates in proteins. Annu Rev Biophys Biophys Chem 17:451–479

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In Harper NJ, Simmonds AB (eds) Advances in drug research vol 3. Academic Press, London New York, pp 21–55

    Google Scholar 

  • Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33:6739–6749

    Article  PubMed  CAS  Google Scholar 

  • Gether U, Lin S, Kobilka BK (1995) Fluorescent labeling of purified β2-adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem 270:28268–28275

    Article  PubMed  CAS  Google Scholar 

  • Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK (1997) Structural instability of a constitutively active G-protein-coupled receptor: agonist-independent activation due to conformational flexibility. J Biol Chem 272:2587–2590

    Article  PubMed  CAS  Google Scholar 

  • Gill SJ, Richey B, Bishop G, Wyman J (1985) Generalized binding phenomena in an allosteric macromolecule. Biophys Chem 21:1–14

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G Proteins: Transducers of G-protein generated signals. Ann Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Milien W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  PubMed  CAS  Google Scholar 

  • Gurwitz D, Haring R, Heldman E, Fraser CM, Manor D, Fisher A (1994) Discrete activation of transduction pathways associated with acetylcholine ml receptor by several muscarinic ligands. Eur J Pharmacol 267:21–31

    Article  PubMed  CAS  Google Scholar 

  • Haltia T, Freire E (1995) Forces and factors that contribute to the structural stability of membrane proteins. Biochim Biophys Acta 1228:1–27

    Article  PubMed  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hamm HE (1998) The many faces of G-protein signalling J Biol Chem 273:669–672

    Article  PubMed  CAS  Google Scholar 

  • Hausdorff WP, Caron MG, Lefkowitz RJ (1990) Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J 4:2881–2889

    PubMed  CAS  Google Scholar 

  • Hilf G, Jakobs KH (1992) Agonist-independent inhibition of G-protein activation by muscarinic acetylcholine receptor antagonists in cardiac membranes. Eur J Pharmacol 225:245–252

    Article  PubMed  CAS  Google Scholar 

  • Hill TL (1956) An introduction to statistical thermodynamics. McGraw-Hill, New York

    Google Scholar 

  • Hjorth SA, Orskov C, Schwartz TW (1998) Constitutive activity of glucagon-receptor mutants. Mol Endocrinol 12:78–86

    Article  PubMed  CAS  Google Scholar 

  • Howe JR, Skryabin BV, Belcher SM, Zerillo CA, Schmauss C (1995) The responsiveness of a tetracycline-sensitive expression system differs in different cell lines J Biol Chem 270:14168–74

    Article  PubMed  CAS  Google Scholar 

  • Iismaa TP, Biden TJ, Shine J (1995) G-protein-coupled receptors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jin J, Mao GF, Ashby B (1997) Constitutive activity of human prostaglandin-E receptor EP3 isoforms. Br J Pharmacol 121:317–323

    Article  PubMed  CAS  Google Scholar 

  • Karlin A (1967) On the application of “a plausible model” of allosteric proteins to the receptor for acetylcholine. J Theor Biol 16:306–320

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, Petsko G A (1990) Molecular dynamics simulations in biology. Nature 347:631–639

    Article  PubMed  CAS  Google Scholar 

  • Kauman A J, Birnbaumer L (1974) Studies on receptor-mediated activation of adenylyl cyclases. IV. Characteristics of the adrenergic receptor coupled to myocardial adenylyl cyclase: stereospecificity for ligands and determination of apparent affinity constants for β-blockers. J Biol Chem 249:7874–7885

    Google Scholar 

  • Kenakin TP (1984) The classification of drugs and drug receptors in isolated tissues. Pharmacol Rev 36:165–222

    PubMed  CAS  Google Scholar 

  • Kenakin TP (1988) Are receptors promiscuous? Intrinsic efficacy as a transduction phenomenon. Life Sci 43:1095–1101

    Article  PubMed  CAS  Google Scholar 

  • Kenakin TP (1992) Pharmacological analysis of drug receptor interaction. Raven Press, New York

    Google Scholar 

  • Kenakin TP (1995a) Agonist-receptor efficacy. I: Mechanisms of efficacy and receptor promiscuity. Trends Pharmacol Sci 16:188–192

    Article  PubMed  CAS  Google Scholar 

  • Kenakin TP (1995b) Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    Article  PubMed  CAS  Google Scholar 

  • Kirchhausen T, Bonifacino JS, Riezman H (1997) Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr Opin Cell Biol 9:488–495

    Article  PubMed  CAS  Google Scholar 

  • Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz JR (1992) Constitutive activation of the αlB-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem 267:1430–1433

    PubMed  CAS  Google Scholar 

  • Koshland DE, Neet E (1968) The catalytic and regulatory properties of enzymes. Annu Rev Biochem 37:359–410

    Article  PubMed  CAS  Google Scholar 

  • Kotyk A, Janacek K (1970) Cell membrane transport: principles and techniques. Plenum Press, New York London

    Google Scholar 

  • Leff P (1995) The two-state model of receptor activation. Trends Pharmacol Sci 16:89–97

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Caron MG (1986) Regulation of adrenergic-receptor function by phosphorylation. Curr Top Cell Regul 28:209–231

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. TIPS 14:303–7

    PubMed  CAS  Google Scholar 

  • Leung E., Jacobson KA, Green RD (1990) Analysis of agonist-antagonist interactions at A1 adenosine receptors. Mol. Pharmacol 38:72–83

    PubMed  CAS  Google Scholar 

  • Levy FO, Zhu X, Kaumann AJ, Birnbaumer L (1993) Efficacy of β 1-adrenergic receptors is lower than that of β2-adrenergic receptors. Proc Natl Acad Sci USA 90:10798–802

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) β-Arrestin: a protein that regulates β-adrenergic-receptor function. Science 248:1547–1550

    Article  PubMed  CAS  Google Scholar 

  • Mewes T, Dutz S, Ravens U, Jakobs KH (1993) Activation of calcium currents in cardiac myocytes by empty β-adrenoceptors. Circulation 88:2916–2922

    Article  PubMed  CAS  Google Scholar 

  • Miller C (1987) How ion channel proteins work. In Kaczmarek LK, Levitan IB (eds) Neuromodulation. The biochemical control of neuronal excitability. Oxford University Press, New York, Oxford, pp 39–63

    Google Scholar 

  • Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  • Morgan NG (1989) Cell signalling. Guilford Press, New York

    Google Scholar 

  • Neer EJ, Clapham DE (1988) Role of G-protein subunits in transmembrane signalling. Nature 333:129–133

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B (1976) Single channel currents recorded from membrane of denervated frog muscle fibers. Nature 260:799–802

    Article  PubMed  CAS  Google Scholar 

  • Onaran HO, Costa T (1997) Agonist efficacy and allosteric models of receptor action. Ann NY Acad Sci 812:98–115

    Article  PubMed  CAS  Google Scholar 

  • Parent JL, Le Gouill C, de Brum-Fernandes AJ, Rola-Pleszczynski M, Stankova J (1996) Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor. J Biol Chem 271:7949–7955

    Article  PubMed  CAS  Google Scholar 

  • Parma J, Duprez L, Van Sande J, Cochaux P, Gervy C, Mockel J, Dumont J, Vassart G (1993) Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365:649–651

    Article  PubMed  CAS  Google Scholar 

  • Perez DM, Hwa J, Gaivin R, Mathur M, Brown F, Graham RM (1996) Constitutive activation of a single effector pathway: evidence for multiple activation states of a G-protein-coupled receptor. Mol Pharmacol 49:112–122

    PubMed  CAS  Google Scholar 

  • Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267:90–93

    Article  PubMed  CAS  Google Scholar 

  • Rang HP (1973) Receptor Mechanisms. Br J Pharmacol 48:475–495

    Article  PubMed  CAS  Google Scholar 

  • Rao VR, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367:639–642

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, Kurose H, Lefkowitz RJ, Cotecchia S (1993) Constitutively active mutants of the α2-adrenergic receptor. J Biol Chem 268:16483–16487

    PubMed  CAS  Google Scholar 

  • Riitano D, Werge TM, Costa T (1997) A mutation changes ligand selectivity and transmembrane signaling preference of the neurokinin-1 receptor. 272:7646–7655

    CAS  Google Scholar 

  • Robb S, Cheek TR, Hanan FL, Hall LM, Midgly JM, Eveans PD (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second-messenger systems. EMBO J 13:1325–1330

    PubMed  CAS  Google Scholar 

  • Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, Mountjoy KG, Cone RD (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72: 827–834

    Article  PubMed  CAS  Google Scholar 

  • Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD (1992) Constitutively active mutants of rhodopsin. Neuron 9:719–725

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284:17–22

    Article  PubMed  CAS  Google Scholar 

  • Ross EM (1989) Signal Sorting and Amplification through G-protein-coupled receptors. Neuron. 3:141–152

    Article  PubMed  CAS  Google Scholar 

  • Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the β2-adrenergie receptor. J Biol Chem 268:4625–4636

    PubMed  CAS  Google Scholar 

  • Samama P, Pei G, Costa T, Cotecchia S, Lefkowitz RJ (1994) Negative antagonists promote an inactive conformation of the β2-adrenergic receptor. Mol Pharmacol 45:390–394

    PubMed  CAS  Google Scholar 

  • Scheer A, Cotecchia S (1997) Constitutively active G-protein-coupled receptors: potential mechanisms of receptor activation. J Recept Signal Transduct Res 17:57–73

    Article  PubMed  CAS  Google Scholar 

  • Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1996) Constitutively active mutants of the αlB-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15:3566–3578

    PubMed  CAS  Google Scholar 

  • Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1997) The activation process of the α1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc Natl Acad Sci USA 94:808–813

    Article  PubMed  CAS  Google Scholar 

  • Schipani E, Kruse K, Juppner H (1995) A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268:98–100

    Article  PubMed  CAS  Google Scholar 

  • Shenker A, Laue L, Kosugi S, Merendino JJ Jr, Minegishi T, Cutler GB Jr (1993) A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365:652–654

    Article  PubMed  CAS  Google Scholar 

  • Smit MJ, Leurs R, Alewijnse AE, Blauw J, Van Nieuw Amerongen GP, Van DeVrede Y, Roovers E, Timmerman H (1996) Inverse agonism of histamine-H2 antagonist accounts for upregulation of spontaneously active histamine-H2 receptors. Proc Natl Acad Sci USA 93:6802–6807

    Article  PubMed  CAS  Google Scholar 

  • Spalding TA, Burstein ES, Brauner-Osborne H, Hill-Eubanks D, Brann MR (1995) Pharmacology of a constitutively active muscarinic receptor generated by random mutagenesis. J Pharmacol Exp Ther 275:1274–1279

    PubMed  CAS  Google Scholar 

  • Spengler D, Waeber C, Pantolini C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365:170–175

    Article  PubMed  CAS  Google Scholar 

  • Sprang SR (1997) G-protein mechanisms: insights from structural analysis. Annu Rev Biochem. 66:639–678

    Article  PubMed  CAS  Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Br J Pharmacol 11:379–393

    CAS  Google Scholar 

  • Stoeckenius W, Bogomolni RA (1982) Bacteriorhodopsin and related pigments of halobacteria. Ann Rev Biochem 52:587–616

    Article  Google Scholar 

  • Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA (1994) Structure and function of G-protein-coupled receptors. Annu Rev Biochem 63:101–132

    Article  PubMed  CAS  Google Scholar 

  • Strosberg AD (1996) G-protein coupled R7G receptors. Cancer Surv 27:65–83

    PubMed  CAS  Google Scholar 

  • Theroux TL, Esbenshade TA, Peavy RD, Minneman KP (1996) Coupling efficiencies of human α1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. Mol Pharmacol 50:1376–1387

    PubMed  CAS  Google Scholar 

  • Thron CD (1973) On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 9:1–9

    PubMed  CAS  Google Scholar 

  • Tiberi M, Caron MG (1994) High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype J Biol Chem 269:27925–27931

    PubMed  CAS  Google Scholar 

  • Tolman RC (1938) The principles of statistical mechanics. Oxford University Press, New York

    Google Scholar 

  • Van Rossum JM (1963) The relationship between chemical structure and biological activity. J Pharm Pharmacol 15:285–316

    Article  PubMed  CAS  Google Scholar 

  • Weber G (1972) Ligand binding and internal equilibria in proteins. Biochemistry 11:864–878

    Article  PubMed  CAS  Google Scholar 

  • Weber G (1973) Energetics of ligand binding to proteins. Adv Protein Chemistry 29:1–83

    Article  Google Scholar 

  • Weber G (1992) Protein interactions. Chapman and Hall, New York

    Google Scholar 

  • Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996) The cubic ternary complex receptor-occupancy model I. Model description. J Theor Biol 178:151–167

    Article  CAS  Google Scholar 

  • Wess J (1997) G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J 11:346–354

    PubMed  CAS  Google Scholar 

  • Wregget KA, DeLean A (1984) The ternary complex model: Its properties and application to ligand interaction with the D2-dopamine receptor of the anterior pituitary gland. Mol Pharmacol 26:214–227

    Google Scholar 

  • Wyman J (1967) Allosteric linkage. J American Chem Soc 89:2202–2218

    Article  CAS  Google Scholar 

  • Wyman J (1984) Linkage graphs: a study in the thermodynamics of macromolecules. Q Rev Biophys 17:453–488

    Article  PubMed  CAS  Google Scholar 

  • Wyman J, Allen DW (1951) The problem of the heme interactions in hemoglobin and the basis of the Bohr effect. J Polymer Sci 7:499–518

    Article  CAS  Google Scholar 

  • Wyman J, Gill SJ (1990) Binding and linkage: Functional chemistry of biological macromolecules. University Science Books, Mill Valley, California

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Onaran, H.O., Scheer, A., Cotecchia, S., Costa, T. (2000). A Look at Receptor Efficacy. From the Signalling Network of the Cell to the Intramolecular Motion of the Receptor. In: Kenakin, T., Angus, J.A. (eds) The Pharmacology of Functional, Biochemical, and Recombinant Receptor Systems. Handbook of Experimental Pharmacology, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57081-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57081-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63028-6

  • Online ISBN: 978-3-642-57081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics