Skip to main content

Maturation and Assembly of Retroviral Glycoproteins

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 214))

Abstract

Retroviruses infect cells after binding to a diverse set of specific cell surface receptors via their envelope glycoproteins (Env) (reviewed in (Weiss 1993). Retroviralenv genes are translated into a precursor protein that enters the secretory pathway of the host cell. During the process of being transported to the plasma membrane, the site at which the glycoproteins become incorporated into virions, the precursor undergoes maturation to a bipartite complex composed of the N-terminal, external surface subunit (SU), and a membrane-spanning Cterminal protein (TM). The receptor specificity of the complex is determined in large part, if not exclusively, by the SU domain, which retains receptor binding activity outside of the complex with T M (Delarco and Todaro 1976; Lasky et al. 1987). The diversity of receptor specificities within some groups of retroviruses has facilitated the identification of regions of the SU proteins that contribute to receptor binding. The heterogeneity of SU proteins that is apparent fromenv sequences of different retroviruses suggests that the structural details of Env-receptor interactions may vary among these viruses. In addition, the sequences or domains that have been implicated in receptor binding differ in their positions within SU. The gp70 of the murine leukemia viruses (MuLVs) appears to be organized into N-terminal and C-terminal structural domains with the receptor-binding determinants in the N-terminal region (Battini et al. 1992; Heard and Danos 1991; Morgan et al. 1993; Ott and Rein 1992), while receptor specificity of avian sarcoma and leukemia virus (ASLV) Env is dependent on sequence in the middle third of S U (Bova et al. 1986, 1988; Dorner and Coffin 1986; Dorner et al. 1985). Receptor binding by gp120 of human immunodeficiency virus (HIV-1) involves a major determinant in the C-terminal third of the protein together with discrete segments from other regions of the protein (Cordonnier et al. 1989; Dowbenko et al. 1988; Lasky et al. 1987; Olshevsky et al. 1990; Pollard et al. 1992). Whether these differences extend to the structures of the SU proteins or only indicate variety in the interaction of a relatively conserved structure with different receptors is unclear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GA, Rose JK (1985) Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell 41: 1007–1015

    PubMed  CAS  Google Scholar 

  • Anderson ED, Thomas L, Hayflick JS, Thomas G (1993) Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed a1-antitrypsin variant. J Biol Chem 268: 24887–24891

    PubMed  CAS  Google Scholar 

  • Arthur LO, Bess JW, Sowder RC, Benveniste RE, Mann DL, Chermann J-C, Henderson LE (1992) Cellular proteins bound to immunodeficiency viruses:implications for pathogenesis and vaccines. Science 258: 1935–1938

    PubMed  CAS  Google Scholar 

  • Barr PJ (1991) Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66: 1–3

    PubMed  CAS  Google Scholar 

  • Bartles JR, Feracci HM, Stieger B, Hubbard AL (1987) Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J Cell Biol 105: 1241–1251

    PubMed  CAS  Google Scholar 

  • Battini J-L, Heard JM, Danos 0 (1992) Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J Virol 66: 1468–1475

    CAS  Google Scholar 

  • Battini J-L, Kayman SC, Pinter A, Heard JM, Danos 0 (1994) Role of N-linked glycosylation in the activity of the Friend murine leukemia virus SU protein receptor-binding domain. Virology 202: 496–499

    CAS  Google Scholar 

  • Bedgood RM, Stallcup MR (1992) A novel intermediate in processing of murine leukemia virus envelope glycoproteins. Proteolytic cleavage in the late Golgi region. J Biol Chem 267: 7060–7065

    Google Scholar 

  • Beisel CE, Edwards JF, Dunn LL, Rice NR (1993) Analysis of multiple mRNAs from pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse reveals a novel protein, Ttm, derived from the carboxy terminus of the EIAV transmembrane protein. J Virol 67: 832–842

    PubMed  CAS  Google Scholar 

  • Benjannet S, Reudelhuber T, Mercure C, Rondeau N, Chretien M, Seidah NG (1992) Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment. Cell type-specific processing of human prorenin by the convertase PC1. J Biol Chem 267: 11417–11423

    PubMed  CAS  Google Scholar 

  • Bergeron JJ, Brenner MB, Thomas DY, Williams DB (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 19: 124–128

    PubMed  CAS  Google Scholar 

  • Bernstein HB, Tucker SP, Hunter E, Schutzbach JS, Compans RW (1994) Human immunodeficiency virus type 1 envelope glycoprotein is modified by O-linked oligosaccharides. J Virol 68: 463–468

    PubMed  CAS  Google Scholar 

  • Blond-Elguindi S, Cwirla SE, Dover WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething M-JH (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728

    Google Scholar 

  • Bosch JV, Schwarz RT (1984) Processing of gPr92env, the precursor of the glycoproteins of Rous sarcoma virus: use of inhibitors of oligosaccharide trimming and glycoprotein transport. Virology 132: 95–109

    PubMed  CAS  Google Scholar 

  • Bosch JV, Schwartz RT, Ziemiecki A, Friis RR (1982) Oligosaccharide modifications and the site of processing of gPr92env, the precursor for the viral glycoproteins of Rous sarcoma virus. Virology 119: 122–132

    PubMed  CAS  Google Scholar 

  • Bosch ML, Andeweg AC, Schipper R, Kenter M (1994) Insertion of N-linked glycosylation sites in the variable regions of the human immunodeficiency virus type 1 surface glycoprotein through AAT triplet reiteration. J Virol 68: 7566–7569

    PubMed  CAS  Google Scholar 

  • Bosch V, Pawlita M (1990) Mutational analysis of the human immunodeficiency virus type 1 env gene product proteolytic cleavage site. J Virol 64: 2337–2344

    PubMed  CAS  Google Scholar 

  • Bova CA, Olsen JC, Swanstrom R (1988) The avian retrovirus env gene family: molecular analysis of host range and antigenic variants. J Virol 62: 75–83

    PubMed  CAS  Google Scholar 

  • Braakman I, Hoover-Litty H, Wagner KR, Helenius A (1991) Folding of influenza hemagglutinin in the endoplasmic reticulum. J Cell Biol 114: 401–411

    PubMed  CAS  Google Scholar 

  • Braakman I, Helenius J, Helenius A (1992a) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11: 1717–1722

    Google Scholar 

  • Braakman I, Helenius J, Helenius A (1992b) Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356: 260–262

    PubMed  CAS  Google Scholar 

  • Breslin MB, Lindberg I, Benjannet S, Mathis JP, Lazure C, Seidah NG (1993) Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J Biol Chem 268: 27084–27093

    PubMed  CAS  Google Scholar 

  • Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake HL, Barr PJ, Thomas G (1990) Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-ß-NGF in vivo. J Cell Biol 111: 2851–2859

    PubMed  CAS  Google Scholar 

  • Brewer CB, Roth MG (1991) A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J Cell Biol 114: 413–421

    PubMed  CAS  Google Scholar 

  • Broder CC, Earl PL, Long D, Abedon ST, Moss B, Doms RW (1994) Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and –sensitive monoclonal antibodies. Proc Natl Acad Sei USA 91: 11699–11703

    CAS  Google Scholar 

  • Brody BA, Hunter E (1992) Mutations within the env gene of Mason-Pfizer monkey virus: effects on protein transport and SU-TM association. J Virol 66: 3466–3475

    PubMed  CAS  Google Scholar 

  • Brody BA, Kimball MG, Hunter E (1994a) Mutations within the transmembrane glycoprotein of Mason- Pfizer monkey virus: loss of SU-TM association and effects on infectivity. Virology 202: 673–683

    PubMed  CAS  Google Scholar 

  • Brody BA, Rhee SS, Hunter E (1994b) Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol 68: 4620–4627

    PubMed  CAS  Google Scholar 

  • Bulleid NJ, Freedman RB (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase deficient microsomes. Nature 335: 649–651

    PubMed  CAS  Google Scholar 

  • Cai H, Wang CC, Tsou CL (1994) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem 269: 24550–24552

    PubMed  CAS  Google Scholar 

  • Calafat J, Hansen H, Demant P, Hilgers J, Zavada J (1983) Specific selection of host cell glycoproteins during assembly of murine leukemia virus and vesicular stomatitis virus: presence of Thy-1 glycoprotein and absence of H-2, Pgp-1 and T200 glycoproteins on the envelopes of these virus particles. J Gen Virol 64: 1241–1253

    PubMed  CAS  Google Scholar 

  • Cardiff RD, Puentes MJ, Young LJT, Smith GH, Teramoto YA, Altrock BW, Pratt TS (1978) Serological and biochemical characterization of the mouse mammary tumor virus with localization of pTO. Virology 85: 157–167

    PubMed  CAS  Google Scholar 

  • Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73: 823–832

    PubMed  CAS  Google Scholar 

  • Casanova JE, Apodaca G, Mostov KE (1991) An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 66: 65–75

    PubMed  CAS  Google Scholar 

  • Casella CR, Panganiban AT (1993) The matrix region is responsible for the differential ability of two retroviruses to function as helpers for vector propagation. Virology 192: 458–464

    PubMed  CAS  Google Scholar 

  • Chakrabarti S, Mizukami T, Franchini G, Moss B (1990) Synthesis, oligomerization, and biological activity of the human immunodeficiency virus type 2 envelope glycoprotein expressed by a recombinant vaccinia virus. Virology 178: 134–142

    PubMed  CAS  Google Scholar 

  • Chambers P, Pringle CR, Easton AJ (1990) Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen Virol 71: 3075–3080

    PubMed  CAS  Google Scholar 

  • Chen SS-L, Lee C-N, Lee W-R, Mcintosh K, Lee T-H (1993) Mutational analysis of the leucine zipperlike motif of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein. J Virol 67: 3615–3619

    Google Scholar 

  • Chernomordik L, Chanturiya AN, Suss-Toby E, Nora E, Zimmerberg J (1994) An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J Virol 68: 7115–7123

    PubMed  CAS  Google Scholar 

  • Chessler SD, Byers PH (1992) Defective folding and stable association with protein disulfide isomerase/ prolyl hydroxylase of type I procollagen with a deletion in the proa2(l) chain that preserves the Gly-X-Y repeat pattern. J Biol Chem 267: 7751–7757

    PubMed  CAS  Google Scholar 

  • Collins PL, Motet G (1991) Homooligomerization of the hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 3 occurs before acquisition of correct intramolecular disulfide bonds and mature immunoreactivity. J Virol 65: 2362–2371

    PubMed  CAS  Google Scholar 

  • Cordonnier A, Montagnier L, Emerman M (1989) Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Nature 340: 571–574

    PubMed  CAS  Google Scholar 

  • Corey JL, Stallcup MR (1990) The order of processing events in mouse mammary tumor virus envelope protein maturation: implications for the location of glucocorticoid-regulated step. Cell Regul 1: 531–541

    PubMed  CAS  Google Scholar 

  • Creemers JW, Kormelink PJ, Roebroek AJ, Nakayama K, Van de Ven WJ (1993) Proprotein processing activity and cleavage site selectivity of the Kex2-like endoprotease PACE4. FEBS Lett 336: 65–69

    CAS  Google Scholar 

  • Crowley KS, Reinhart GD, Johnson AE (1993) The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73: 1101–1115

    PubMed  CAS  Google Scholar 

  • Dargemont C, Le Bivic A, Rothenberger S, lacopetta B, Kuhn LC (1993) The internalization signal and the phosphorylation site of transferrin receptor are distinct from the main basolateral sorting information. EMBO J 12: 1713–1721

    Google Scholar 

  • Davis NG, Hsu M-C (1986) The fusion-related hydrophobic domain of Sendai F protein can be moved through the cytoplasmic membrane ofEscherichia coli. Proc Natl Acad Sci USA 83: 5091–5095

    PubMed  CAS  Google Scholar 

  • Decroly E, Cornet B, Martin I, Ruysshaert J-M, Vandenbranden M (1993) Secondary structure of gp160 and gp120 envelope glycoproteins of human immunodeficiency virus type 1: a Fourier transform infrared spectroscopy study. J Virol 67: 3552–3560

    PubMed  CAS  Google Scholar 

  • Decroly E, Vandenbranden M, Ruysschaert JM, Cogniaux J, Jacob GS, Howard SC, Marshall G, Kompelli A, Basak A, Jean F et al (1994) The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 intogp120 (HIV-1 SU) and gp41 ( HIVI TM ). J Biol Chem 269: 12240–12247

    PubMed  CAS  Google Scholar 

  • Dedera D, Gu R, Ratner L (1992) Conserved cysteine residues in the human immunodeficiency virus type 1 transmembrane envelope protein are essential for precursor envelope cleavage. J Virol 66: 1207–1209

    PubMed  CAS  Google Scholar 

  • DeLarco JE, Todaro GJ (1976) Membrane receptors for murine leukemia viruses: characterization using the purified viral envelope glycoprotein gp71. Cell 8: 365–371

    Google Scholar 

  • Delwart EL, Mosalios G (1990) Retroviral envelope glycoproteins contain a “leucine zipper”-like repeat. AIDS Res Hum Retroviruses 6: 703–706

    PubMed  CAS  Google Scholar 

  • Delwart EL, Panganiban AT (1989) Role of reticuloendotheliosis virus envelope glycoprotein in uperinfection interference. J Virol 63: 273–280

    PubMed  CAS  Google Scholar 

  • de Silva A, Balch WE, Helenius A (1990) Quality control in the endoplasmic reticulum: folding and misfolding of vesicular stomatitis virus G protein in cells and in vitro. J Cell Biol 111: 857–866

    PubMed  Google Scholar 

  • de Silva A, Braakman I, Helenius A (1993) Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes. J Cell Biol 120: 647–655

    PubMed  Google Scholar 

  • Doms RW, Earl PL, Chakrabarti S, Moss B (1990) Human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus env proteins possess a functionally conserved assembly domain. J Virol 64: 3537–3540

    PubMed  CAS  Google Scholar 

  • Doms RW, Lamb RA, Rose JK, Helenius A (1993) Folding and assembly of viral membrane proteins. Virology 193: 545–562

    PubMed  CAS  Google Scholar 

  • Dong J, Hunter E (1993) Analysis of retroviral assembly using a vaccinia/T7-polymerase complementation system. Virology 194: 192–199

    PubMed  CAS  Google Scholar 

  • Dong J, Roth MG, Hunter E (1992a) A chimeric avian retrovirus containing the influenza virus emagglutinin gene has an expanded host range. J Virol 66: 7374–7382

    PubMed  CAS  Google Scholar 

  • Dong JY, Dubay JW, Perez LG, Hunter E (1992b) Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein define a requirement for dibasic residues for intracellular cleavage. J Virol 66: 865–874

    PubMed  CAS  Google Scholar 

  • Dorfman T, Mammano F, Haseltine WA, Gottlinger HG (1994) Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68: 1689–1696

    PubMed  CAS  Google Scholar 

  • Dorner AJ, Coffin JM (1986) Determinants for receptor interaction and cell killing on the avian retrovirus glycoprotein gp85. Cell 45: 365–374

    PubMed  CAS  Google Scholar 

  • Dorner AJ, Stoye JP, Coffin JM (1985) Molecular basis of host range variation in avian retroviruses. J Virol 53: 32–39

    PubMed  CAS  Google Scholar 

  • Dowbenko D, Nakamura G, Fennie C, Shimasaki C, Riddle L, Harris R, Gregory T, Lasky L (1988) Epitope mapping of the human immunodeficiency virus type 1 gp120 with monoclonal antibodies. J Virol 62: 4703–711

    PubMed  CAS  Google Scholar 

  • Doyle C, Sambrook J, Gething M-J (1986) Analysis of progressive deletions of the transmembrane and cytoplasmic domains of influenza hemagglutinin. J Cell Biol 103: 1193–1204

    PubMed  CAS  Google Scholar 

  • Dubay JW, Roberts SJ, Brody B, Hunter E (1992a) Mutations in the leucine zipper of the human immunodeficiency virus type 1 affect fusion and infectivity. J Virol 66: 4748–4756

    PubMed  CAS  Google Scholar 

  • Dubay JW, Roberts SJ, Hahn BH, Hunter E (1992b) Truncation of the human immunodeficiency virus type 1 glycoprotein cytoplasmic domain blocks virus infectivity. J Virol 66: 6616–6625

    PubMed  CAS  Google Scholar 

  • Earl PL, Moss B (1993) Mutational analysis of the assembly domain of the HIV-1 envelope glycoprotein. AIDS Res Hum Retroviruses 9: 589–594

    PubMed  CAS  Google Scholar 

  • Earl PL, Doms RW, Moss B (1990) Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sei USA 87: 648–652

    CAS  Google Scholar 

  • Earl PL, Moss B, Doms R (1991) Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol 65: 2047–2055

    PubMed  CAS  Google Scholar 

  • Einfeld D, Hunter E (1988) Oligomeric structure of a prototype retrovirus glycoprotein. Proc Natl Acad Sei USA 85: 8688–8692

    CAS  Google Scholar 

  • Einfeld DA, Hunter E (1994) Expression of the TM protein of Rous sarcoma virus in the absence of SU shows that this domain is capable of oligomerization and intracellular transport. J Virol 68: 2513–2520

    PubMed  CAS  Google Scholar 

  • Ellerbrok H, D’Auriol L, Vaquero C, Sitbon M (1992) Functional tolerance of the human immunodeficiency virus type 1 envelope signal peptide to mutations in the amino-terminal and hydrophobic regions. J Virol 66: 5114–5118

    PubMed  CAS  Google Scholar 

  • Emi N, Friedmann T, Yee JK (1991) Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol 65: 1202–1207

    PubMed  CAS  Google Scholar 

  • Felkner RH, Roth MJ (1992) Mutational analysis of the N-linked glycosylation sites of the SU envelope protein of Moloney murine leukemia virus. J Virol 66: 4258–4264

    PubMed  CAS  Google Scholar 

  • Fenouillet E, Gluckman JC (1991) Effect of a glucosidase inhibitor on the bioactivity and immunoreactivity of human immunodeficiency virus type 1 envelope glycoprotein. J Gen Virol 72: 1919–1926

    PubMed  CAS  Google Scholar 

  • Fenouillet E, Gluckman JC (1992) Immunological analysis of human immunodeficiency virus type 1 envelope glycoprotein proteolytic cleavage. Virology 187: 825–828

    PubMed  CAS  Google Scholar 

  • Fenouillet E, Gluckman JC, Bahraoui E (1990) Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1. J Virol 64: 2841–2848

    PubMed  CAS  Google Scholar 

  • Fenouillet E, Jones I, Powel B, Schmitt D, Kieny MP, Gluckman JC (1993) Functional role of the glycan cluster of the human immunodeficiency virus type 1 transmembrane glycoprotein (gp41) ectodomain. J Virol 67: 150–160

    PubMed  CAS  Google Scholar 

  • Flynn GC, Chappell TG, Rothman JE (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385–390

    PubMed  CAS  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353: 726–730

    PubMed  CAS  Google Scholar 

  • Freed EO, Risser R (1987) The role of envelope glycoprotein processing in murine leukemia virus infection. J Virol 61: 2852–2856

    PubMed  CAS  Google Scholar 

  • Freed EO, Myers DJ, Risser R (1989) Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J Virol 63: 4670–4675

    PubMed  CAS  Google Scholar 

  • Freed EO, Delwart EL, Buchschacher GLJ, Panganiban AT (1992) A mutation in the human mmunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sei USA 89: 70–74

    CAS  Google Scholar 

  • Freedman RB (1989) Protein disulfide isomerase: multiple roles in the modification of nascent secretor proteins. Cell 57: 1069–1072

    PubMed  CAS  Google Scholar 

  • Gabuzda DH, Lever A, Terwilliger E, Sodroski J (1992) Effects of deletions in the cytoplasmic domain on biological functions of human immunodeficiency virus type 1 glycoproteins. J Virol 66: 3306–3315

    PubMed  CAS  Google Scholar 

  • Gallagher PJ, Henneberry JM, Sambrook JF, Gething M-JH (1992) Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus. J Virol 66: 7136–7145

    Google Scholar 

  • Gallaher WR, Ball JM, Garry RF, Griffin MC, Montelaro RC (1989) A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses 5: 431–440

    PubMed  CAS  Google Scholar 

  • Garten W, Liner D, Rott R, Klenk H-D (1982) The cleavage site of the hemagglutinin of fowl plague virus. Virology 122: 186–190

    PubMed  CAS  Google Scholar 

  • Gawrisch K, Han KH, Yang JS, Bergelson LD, Ferretti JA (1993) Interaction of peptide fragment 828-848 of the envelope glycoprotein of human immunodeficiency virus type 1 with lipid bilayers. Biochemistry 32: 3112–3118

    PubMed  CAS  Google Scholar 

  • Gebhardt A, Bosch JV, Ziemiecki A, Friis R (1984) Rous sarcoma virus p19 and gp35 can be chemically crosslinked to high molecular weight complexes. J Mol Biol 174: 297–317

    PubMed  CAS  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355: 33–45

    PubMed  CAS  Google Scholar 

  • Geyer H, Holschbach C, Hunsmann G, Schneider J (1988) Carbohydrates of human immunodeficiency virus. Structures of oligosaccharides linked to the envelope glycoprotein 120. J Biol Chem 263: 11760–11767

    PubMed  CAS  Google Scholar 

  • Geyer R, Dabrowski J, Dabrowski U, Under D, Schlüter M, Schott H-H, Stirm S (1990) Oligosaccharides at individual glycosylation sites in glycoprotein 71 of Friend murine leukemia virus. Eur J Biochem 187: 95–110

    PubMed  CAS  Google Scholar 

  • Gilbert JM, Hernandez LD, Chernov-Rogan T, White JM (1993) Generation of a water-soluble oligomeric ectodomain of the Rous sarcoma virus envelope glycoprotein. J Virol 67: 6889–6892

    PubMed  CAS  Google Scholar 

  • Gliniak BC, Kozak SL, Jones RT, Kabat D (1991) Disulfide bonding controls the processing of retroviral envelope glycoproteins. J Biol Chem 266: 22991–22997

    PubMed  CAS  Google Scholar 

  • Görlich D, Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75: 615–630

    PubMed  Google Scholar 

  • Görlich D, Prehn S, Hartmann E, Kalies K-U, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71: 489–503

    Google Scholar 

  • Gorman JJ, Corino GL, Selleck PW (1990) Comparison of the positions and efficiency of cleavage activation of fusion protein precursors of virulent and avirulent strains of Newcastle disease virus: insights into the specificities of activating proteases. Virology 177: 339–351

    PubMed  CAS  Google Scholar 

  • Granowitz C, Colicelli J, Goff SP (1991) Analysis of mutations in the envelope gene of Moloney murine leukemia virus: separation of infectivity from superinfection resistance. Virology 183: 545–554

    PubMed  CAS  Google Scholar 

  • Gray KD, Roth M (1993) Mutational analysis of the envelope gene of Moloney murine leukemia virus. J Virol 67: 3489–3496

    PubMed  CAS  Google Scholar 

  • Gruters RA, Neefjes JJ, Tersmette M, De Goede REV, Huisman G, Miedema R, Ploegh HL (1987) Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330: 74–77

    PubMed  CAS  Google Scholar 

  • Guguen M, Biddison WE, Long EO (1994) T cell recognition of an HLA-A2 restricted epitope derived from a cleaved signal sequence. J Exp Med 180: 1989–1994

    Google Scholar 

  • Haffar OK, Dowbenko DJ, Berman PW (1991) The cytoplasmic tail of HIV-1 gp160 contains regions that associate with cellular membranes. Virology 180: 439–441

    PubMed  CAS  Google Scholar 

  • Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360: 358–361

    PubMed  CAS  Google Scholar 

  • Hammond C, Helenius A (1993) A chaperone with a sweet tooth. Curr Biol 3: 884–886

    PubMed  CAS  Google Scholar 

  • Hammond C, Helenius A (1994a) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266: 456–458

    PubMed  CAS  Google Scholar 

  • Hammond C, Helenius A (1994b) Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol 126: 41–52

    PubMed  CAS  Google Scholar 

  • Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sei USA 91: 913–917

    CAS  Google Scholar 

  • Hansen JE, Clausen H, Hu SL, Nielsen JO, Olofsson S (1992) An O-linked carbohydrate neutralization epitope of HIV-1 gp 120 is expressed by HIV-1 env gene recombinant vaccinia virus. Arch Virol 126: 11–20

    PubMed  CAS  Google Scholar 

  • Hardwick JM, Shaw KES, Wills JW, Hunter E (1986) Ami no-terminal deletion mutants of the Rous sarcoma virus glycoprotein do not block signal peptide cleavage but can block intracellular transport. J Cell Biol 103: 829–838

    PubMed  CAS  Google Scholar 

  • Hatsuzawa K, Hosaka M, Nakagawa T, Nagase M, Shoda A, Murakami K, Nakayama K (1990) Structure and expression of mouse furin, a yeast Kex2-related protease: lack of processing of coexpressed prorenin in G H cells. J Biol Chem 265: 22075–22078

    PubMed  CAS  Google Scholar 

  • Heard JM, Danos O (1991) An amino-terminal fragment of the Friend leukemia virus envelope glycoprotein binds the ecotropic receptor. J Virol 65: 4026–4032

    PubMed  CAS  Google Scholar 

  • Hendershot L, Bole D, Köhler G, Kearney JF (1987) Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104: 761–767

    PubMed  CAS  Google Scholar 

  • High S, Görlich D, Wiedmann M, Rapoport TA, Dobberstein B (1991) The identification of proteins in the proximity of signal-anchor sequences during targeting to and insertion into the membrane of the ER. J Cell Biol 113: 35–44

    PubMed  CAS  Google Scholar 

  • Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y (1994) Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol 68: 6074–6078

    PubMed  CAS  Google Scholar 

  • Hosaka M, Nagahama M, Kim W-S, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K (1991) Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem 266: 12127–12130

    PubMed  CAS  Google Scholar 

  • Hoxie JA, Fitzharris TP, Youngbar PR, Matthews DM, Rackowski JL, Radka SF (1987) Nonrandom association of cellular antigens with HTLV-III virions. Hum Immunol 18: 39–52

    PubMed  CAS  Google Scholar 

  • Hubbard TJP, Sander C (1991) The role of heat-shock and chaperone proteins in protein folding: possible molecular mechanisms. Protein Eng 4: 711–717

    PubMed  CAS  Google Scholar 

  • Hunter E, Swanstrom R (1990) Retrovirus envelope glycoproteins. In: Swanstrom R, Vogt PK (eds) Retroviruses. Strategies to replication. Springer, Berlin Heidelberg New York, pp 187–253 (Current topics in microbiology and immunology, vol 157 )

    Google Scholar 

  • Hunter E, Hill E, Hardwick M, Bhown A, Schwartz DE, Tizard R (1983) Complete sequence of the Rous sarcoma virus env gene: identification of structural and functional regions of its product. J Virol 46: 920–936

    PubMed  CAS  Google Scholar 

  • Hunziker W, Harter C, Matter K, Mellman I (1991) Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell 66: 907–920

    PubMed  CAS  Google Scholar 

  • Jackson MR, Cohen-Doyle MF, Peterson PA, Williams DB (1994) Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263: 384–387

    PubMed  CAS  Google Scholar 

  • Johnston PB, Dubay JW, Hunter E (1993) Truncations of the simian immunodeficiency virus ransmembrane protein confer expanded host range by removing a block to virus entry into cells. J Virol 67: 3077–3086

    PubMed  CAS  Google Scholar 

  • Kamps CA, Lin YC, Wong PKY (1991) Oligomerization and transport of the envelope protein of Moloney murine leukemia virus-TB and of ts-1, a neurovirulent temperature-sensitive mutant of Mo- MuLV-TB. Virology 184: 687–694

    PubMed  CAS  Google Scholar 

  • Kayman SC, Kopelman R, Projan S, Kinney DM, Pinter A (1991) Mutational analysis of N-linked glycosylation sites of Friend murine leukemia virus envelope protein. J Virol 65: 5323–5332

    PubMed  CAS  Google Scholar 

  • Kearse KP, Williams DB, Singer A (1994) Persistence of glucose residues on core oligosaccharides prevents association of TCRa and TCRp proteins with calnexin and results specifically in accelerated degradation of nascent TCRa proteins within the endoplasmic reticulum. EMBO J 13: 3678–3686

    Google Scholar 

  • Kido H, Kamoshita K, Fukutomi A, Katunuma N (1993) Processing protease for gp160 human immunodeficiency virus type I envelope glycoprotein precursor in human T4+ lymphocytes. J Biol Chem 268: 13406–13413

    PubMed  CAS  Google Scholar 

  • Kiefer MC, Tucker JE, Joh R, Landsberg KE, Saltman D, Barr PJ (1991) Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol 10: 757–769

    PubMed  CAS  Google Scholar 

  • Kilpatrick DR, Srinivas SR, Stephens EB, Compans RW (1987) Effects of deletion of the cytoplasmic domain upon surface expression and membrane stability of a viral envelope glycoprotein. J Biol Chem 262: 16116–16121

    PubMed  CAS  Google Scholar 

  • Kim PS, Bole D, Arvan P (1992) Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP. J Cell Biol 118: 541–549

    Google Scholar 

  • Korner J, Chun J, O’Bryan L, Axel R (1991) Prohormone processing inXenopus oocytes: characterization of cleavage signals and cleavage enzymes. Proc Natl Acad Sci USA 88: 11393–11397

    PubMed  CAS  Google Scholar 

  • Krijnse-Locker J, Ericsson M, Rottier PJM, Griffiths G (1994) Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 124: 55–70

    PubMed  CAS  Google Scholar 

  • LaMantia M, Lennarz WJ (1993) The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity. Cell 74: 899–908

    Google Scholar 

  • Landau NR, Page KA, Littman DR (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 65: 162–169

    PubMed  CAS  Google Scholar 

  • Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki DH, Patzer E, Berman P, Gregory T, Capon DJ (1987) Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with CD4. Cell 50: 975–985

    PubMed  CAS  Google Scholar 

  • Le Bivic A, Quaroni A, Nichols B, Rodriguez-Boulan E (1990a) Biogenetic pathways of plasma membrane proteins in Caco-2, a human intestinal epithelial cell line. J Cell Biol 111: 1351–1361

    PubMed  Google Scholar 

  • Le Bivic A, Sambury Y, Mostov K, Rodriguez-Boulan E (1990b) Vectorial targeting of an endogenous apical membrane sialoglycoprotein and uvomorulin in MDCK cells. J Cell Biol 110: 1533–1539

    PubMed  Google Scholar 

  • Leamnson RN, Shander MHN, Halpern MS (1977) A structural protein complex in Moloney leukemia virus. Virology 76: 437–439

    PubMed  CAS  Google Scholar 

  • Lee W-R, Syu W-J, Du B, Matsuda M, Tan S, Wolf A, Lee T-H, Essex M (1992a) Nonrandom distribution of gp120 N-linked glycosylation sites important for infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 89: 2212–2217

    Google Scholar 

  • Lee W-R, Yu X-F, Syu W-J, Essex M, Lee T-H (1992b) Mutational analysis of conserved N-linked glycosylation sites of human immunodeficiency virus type 1 gp41. J Virol 66: 1799–1803

    PubMed  CAS  Google Scholar 

  • Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265: 10373–10382

    PubMed  CAS  Google Scholar 

  • Levy JA (1977) Murine xenotropic type C viruses. III. Phenotypic mixing with avian leukosis and sarcoma viruses. Virology 77: 811–825

    PubMed  CAS  Google Scholar 

  • Under M, Under D, Hahnen J, Schott HH, Stirm S (1992) Localization of the intrachain disulfide bonds of the envelope glycoprotein 71 from Friend murine leukemia virus. Eur J Biochem 203: 65–73

    Google Scholar 

  • Under M, Wenzel V, Linder D, Stirm S (1994) Structural elements in glycoprotein 70 from polytropic Friend mink cell focus-inducing virus and glycoprotein 71 from ecotropic Friend murine leukemia virus, as defined by disulfide-bonding pattern and limited proteolysis. J Virol 68: 5133–5141

    Google Scholar 

  • Livingston DM, Howard T, Spence C (1976) Identification of infectious virions which are vesicular stomatitis virus pseudotypes of murine type C virus. Virology 70: 432–439

    PubMed  CAS  Google Scholar 

  • Lodge R, Gottlinger H, Gabuzda D, Cohen EA, Lemay G (1994) The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol 68: 4857–4861

    PubMed  CAS  Google Scholar 

  • Lodish HF, Kong N, Hirani S, Rasmussen J (1987) A vesicular intermediate in the transport of hepatoma secretory proteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol 104: 221–230

    PubMed  CAS  Google Scholar 

  • Lusson J, Vieau D, Hamelin J, Day R, Chretien M, Seidah NG (1993) cDNA structure of the mouse and rat subtilisin/kexin-like PC5: a candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc Natl Acad Sci USA’90: 6691–6695

    Google Scholar 

  • Machamer CE, Rose JK (1988) Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding. J Biol Chem 263: 5955–5960

    PubMed  CAS  Google Scholar 

  • Machamer CE, Florkiewicz RZ, Rose JK (1985) A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol Cell Biol 5: 3074–3083

    PubMed  CAS  Google Scholar 

  • Machamer CE, Doms RW, Bole DG, Helenius A, Rose JK (1990) Heavy chain binding protein recognizes incompletely disulfide-bonded forms of vesicular stomatitis virus G protein. J Biol Chem 265: 6879–6883

    PubMed  CAS  Google Scholar 

  • Matter K, Brauchbar M, Bucher K, Hauri H-P (1990) Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco-2). Cell 60: 429–437

    PubMed  CAS  Google Scholar 

  • McGuire TC, Knowles DPJ, Davis WC, Brassfield AL, Stem TA, Cheevers WP (1992) Transmembrane protein oligomers of caprine arthritis-encephalitis lentivirus are immunodominant in goats with progressive arthritis. J Virol 66: 3247–3250

    PubMed  CAS  Google Scholar 

  • Mellman I, Simons K (1992) The Golgi complex: in vitro Veritas? Cell 68: 829–840

    Google Scholar 

  • Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370: 373–375

    PubMed  CAS  Google Scholar 

  • Mizouchi T, Matthews TJ, Kato M, Hamako J, Titani K, Solomon J, Feizi T (1990) Diversity of ligosaccharide structures on the envelope glycoprotein of human immunodeficiency virus 1 from the lymphoblastoid cell line H9: presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues. J Biol Chem 265: 8519–8524

    Google Scholar 

  • Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G (1992) Human furin is a calciumdependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267: 16396–16402

    PubMed  CAS  Google Scholar 

  • Montelaro RC, Sullivan SJ, Bolognesi DP (1978) An analysis of type-C retrovirus polypeptides and their associations in the virion. Virology 84: 19–31

    PubMed  CAS  Google Scholar 

  • Morgan RA, Nussbaum O, Muenchau DD, Shu L, Couture L, Anderson WF (1993) Analysis of the functional and host range-determining regions of the murine ecotropic and amphotropic retrovirus envelope proteins. J Virol 67: 4712–4721

    PubMed  CAS  Google Scholar 

  • Morikawa Y, Moore JP, Fenouillet E, Jones IM (1992) Complementation of human immunodeficiency virus glycoprotein mutations in trans. J Gen Virol 73: 1907–1913

    PubMed  CAS  Google Scholar 

  • Morikawa Y, Barsov E, Jones I (1993) Legitimate and illegitimate cleavage of human immunodeficiency virus glycoproteins by furin. J Virol 67: 3601–3604

    PubMed  CAS  Google Scholar 

  • Morjana NA, Gilbert HF (1991) Effect of protein and peptide inhibitors on the activity of protein disulfide isomerase. Biochemistry 30: 4985–4990

    PubMed  CAS  Google Scholar 

  • Mulligan MJ, Yamshchikov GV, Ritter GD, Gao F, Jin MJ, Nail CD, Hahn BH, Compans RC (1992) Cytoplasmic domain truncation enhances fusion activity by the exterior glycoprotein complex of human immunodeficiency virus type 2 in selected cell types. J Virol 66: 3971–3975

    PubMed  CAS  Google Scholar 

  • Müsch A, Wiedmann M, Rapoport TA (1992) Yeast Sec proteins interact with polypeptides traversing the endoplasmic reticulum membrane. Cell 69: 343–352

    PubMed  Google Scholar 

  • Nagai Y (1993) Protease-dependent virus tropism and pathogenicity. Trends Microbiol 1: 81–87

    PubMed  CAS  Google Scholar 

  • Ng DT, Watowich SS, Lamb RA (1992) Analysis in vivo of GRP78-BiP/substrate interactions and their role n induction of the GRP78-BiP gene. Mol Biol Cell 3: 143–155

    PubMed  CAS  Google Scholar 

  • Ng VL, Wood TG, Arlinghaus RB (1982) Processing of the env gene products of MuLV. J Gen Virol 59: 329–343

    Google Scholar 

  • Nicchitta CV, Blobel G (1993) Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 73: 989–998

    PubMed  CAS  Google Scholar 

  • Noiva R, Lennarz WJ (1992) Protein disulfide isomerase: a multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem 267: 3553–3556

    PubMed  CAS  Google Scholar 

  • Noiva R, Kimura H, Roos J, Lennarz WJ (1991) Peptide binding by protein disulfide isomerase, a resident protein of the endoplasmic reticulum. J Biol Chem 266: 19645–19649

    PubMed  CAS  Google Scholar 

  • Noiva R, Freedman RB, Lennarz WJ (1993) Peptide binding to protein disulfide isomerase occurs at a site distinct from the active site. J Biol Chem 268: 19210–19217

    PubMed  CAS  Google Scholar 

  • Oda K, Ikeda M, Tsuji E, Sohda M, Takami N, Misumi Y, Ikehara Y (1991) Sequence requirements for proteolytic cleavage of precursors with paired basic amino acids. Biochem Biophys Res Commun 179: 1181–1186

    PubMed  CAS  Google Scholar 

  • Ohnishi Y, Shioda T, Nakayama K, Iwata S, Gotoh B, Hamaguchi M, Nagai Y (1994) A furin-defective cell line is able to process correctly the gp160 of human immunodeficiency virus type 1. J Virol 68: 4075–4079

    PubMed  CAS  Google Scholar 

  • Olshevsky U, Heiseth E, Furman C, Li J, Haseltine W, Sodroski J (1990) Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol 64: 5701–5707

    PubMed  CAS  Google Scholar 

  • Otsu M, Omura F, Yoshimori T, Kikuchi M (1994) Protein disulfide isomerase associates with misfolded human lysozyme in vitro. J Biol Chem 269: 6874–6877

    PubMed  CAS  Google Scholar 

  • Ott D, Rein A (1992) Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70su. J Virol 66: 4632–638

    PubMed  CAS  Google Scholar 

  • Ou WJ, Cameron PH, Thomas DY, Bergeron JJ (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776

    PubMed  CAS  Google Scholar 

  • Owens RJ, Compans RW (1990) The human immunodeficiency virus type 1 envelope glycoprotein precursor acquires aberrant intermolecular disulfide bonds that may prevent normal proteolytic processing. Virology 179: 827–833

    PubMed  CAS  Google Scholar 

  • Owens RJ, Dubay JW, Hunter E, Compans RW (1991) Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci USA 88: 3987–3991

    PubMed  CAS  Google Scholar 

  • Owens RJ, Burke C, Rose JK (1994) Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity. J Virol 68: 570–574

    PubMed  CAS  Google Scholar 

  • Page KA, Landau NR, Littman DR (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64: 5270–5276

    PubMed  CAS  Google Scholar 

  • Pal R, Hoke GM, Sarngadharan MG (1989a) Role of the oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86: 3384–3388

    PubMed  CAS  Google Scholar 

  • Pal R, Kalyanaraman VS, Hoke GM, Sarngadharan MG (1989b) Processing and secretion of envelope glycoproteins of human immunodeficiency virus type 1 in the presence of trimming glucosidase inhibitor deoxynojirimycin. Intervirology 30: 27–35

    PubMed  CAS  Google Scholar 

  • Patarca R, Haseltine WA (1984) Similarities among retrovirus proteins. Nature 312: 496

    PubMed  CAS  Google Scholar 

  • Paterson RG, Lamb RA (1987) Ability of the hydrophobic fusion-related external domain of a aramyxovirus F protein to act as a membrane anchor. Cell 48: 441–452

    PubMed  CAS  Google Scholar 

  • Pepinsky RB, Cappiello D, Wilkowski C, Vogt VM (1980) Chemical crosslinking of proteins in avian sarcoma and leukemia viruses. Virology 102: 205–210

    PubMed  CAS  Google Scholar 

  • Perez LG, Hunter E (1987) Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein that block processing to gp85 and gp37. J Virol 61: 1609–1614

    PubMed  CAS  Google Scholar 

  • Perez LG, Davis GL, Hunter E (1987) Mutants of the Rous sarcoma virus envelope glycoprotein that lack the transmembrane anchor and/or cytoplasmic domains: analysis of intracellular transport and assembly into virions. J Virol 61: 2981–2988

    PubMed  CAS  Google Scholar 

  • Persson R, Pettersson RF (1991) Formation and intracellular transport of a heterodimeric viral spike protein complex. J Cell Biol 112: 257–266

    PubMed  CAS  Google Scholar 

  • Pfeiffer S, Fuller SD, Simons K (1985) Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin-Darby canine kidney cells. J Cell Biol 101: 470–476

    PubMed  CAS  Google Scholar 

  • Pinter A, Fleissner E (1977) The presence of disulfide-linked gp70–p15(E) complexes in AKR MuLV. Virology 88: 222–227

    Google Scholar 

  • Pinter A, Fleissner E (1979) Characterization of oligomeric complexes of murine and feline leukemia virus envelope and core components formed upon crosslinking. J Virol 30: 157–165

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ (1983) Comparison of structural domains of gp70s of ecotropic AKV and its dualtropic recombinant MCF-247. Virology 129: 40–50

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ (1984) Characterization of structural and immunological properties of specific domains of Friend ecotropic and dualtropic murine leukemia virus gp70s. J Virol 49: 452–458

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ (1988) O-linked glycosylation of retroviral envelope gene products. J Virol 62: 1016–1021

    PubMed  CAS  Google Scholar 

  • Pinter A, Lieman-Hurwitz J, Fleissner E (1978) The nature of the association between the murine leukemia virus envelope proteins. Virology 91: 345–351

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ, Li JS (1984) Studies with inhibitors of oligosaccharide processing indicate a functional role for complex sugars in the transport and proteolysis of Friend mink cell focusinducing murine leukemia virus envelope proteins. Virology 136: 196–210

    PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ, Tilley SA, Bona C, Zaghouani H, Gorny MK, Zolla-Pazner S (1989) Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J Virol 63: 2674–2679

    PubMed  CAS  Google Scholar 

  • Pollard SR, Rosa MD, Rosa JJ, Wiley DC (1992) Truncated variants of gp120 bind CD4 with high affinity and suggest a minimum CD4 binding region. EMBO J 11: 585–591

    Google Scholar 

  • Pollok BA, Anker R, Eldridge P, Hendershot L, Levitt D (1987) Molecular basis of the cell-surface expression of immunoglobulin \i chain without light chain in human B lymphocytes. Proc Natl Acad Sci USA 84: 9199–9203

    PubMed  CAS  Google Scholar 

  • Poruchynsky MS, Atkinson PH (1988) Primary sequence domains required for retention of rotavirus VP7 in the endoplasmic reticulum. J Cell Biol 107: 1697–1706

    PubMed  CAS  Google Scholar 

  • Prill V, Lehmann L, von Figura K, Peters C (1993) The cytoplasmic tail of lysosomal acid phosphatase contains overlapping but distinct signals for basolateral sorting and rapid internalization in polarized MDCK cells. EMBO J 12: 2181–2193

    Google Scholar 

  • Puig A, Lyles MM, Noiva R, Gilbert HF (1994) The role of the thiol/disulfide centers and peptide binding site in the chaperone and anti-chaperone activities of protein disulfide isomerase. J Biol Chem 269: 19128–19135

    PubMed  CAS  Google Scholar 

  • Racevskis J, Sarkar NH (1980) Murine mammary tumor virus structural protein interactions: formation of oligomeric complexes with cleavable cross-linking agents. J Virol 35: 937–948

    PubMed  CAS  Google Scholar 

  • Ragheb JA, Anderson WF (1994) Uncoupled expression of Moloney murine leukemia virus envelope polypeptides SU and TM: a functional analysis of the role of TM domains in viral entry. J Virol 68: 3207–3219

    PubMed  CAS  Google Scholar 

  • Rajagopalan S, Xu Y, Brenner MB (1994) Retention of unassembled components of integral membrane proteins by calnexin. Science 263: 387–390

    PubMed  CAS  Google Scholar 

  • Ratner L, Vander Heyden N, Dedera D (1991) Inhibition of HIV and SIV infectivity by blockade of aglucosidase activity. Virology 181: 180–192

    Google Scholar 

  • Rehemtulla A, Barr PJ, Rhodes CJ, Kaufman RJ (1993) PACE4 is a member of the mammalian propeptidase family that has overlapping but not identical substrate specificity to PACE. Biochemistry 32: 11586–11590

    PubMed  CAS  Google Scholar 

  • Rein A, Mirro J, Haynes JG, Ernst SM, Nagashima K (1994) Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J Virol 68: 1773–1781

    PubMed  CAS  Google Scholar 

  • Rey M-A, Krust B, Laurent AG, Montagnier L, Hovanessian AG (1989) Characterization of human immunodeficiency virus type 2 envelope glycoproteins: dimerization of the glycoprotein precursor during processing. J Virol 63: 647–658

    PubMed  CAS  Google Scholar 

  • Rey M-A, Laurent AG, McClure J, Krust B, Montagnier L, Hovanessian AG (1990) Transmembrane envelope glycoproteins of human immunodeficiency virus type 2 and simian immunodeficiency virus SIV-mac exist as homodimers. J Virol 64: 922–926

    PubMed  CAS  Google Scholar 

  • Rindler MJ, Ivanov IE, Plesker H, Rodriguez-Boulan E, Sabatini DD (1984) Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J Cell Biol 98: 1304–1319

    PubMed  CAS  Google Scholar 

  • Rindler MJ, Ivanov IE, Plesker H, Sabatini DD (1985) Polarized delivery of viral glycoproteins to the apical and basolateral plasma membranes of Madin-Darby canine kidney cells infected with temperature sensitive virus. J Cell Biol 100: 136–151

    PubMed  CAS  Google Scholar 

  • Ritter GD Jr, Mulligan MJ, Lydy SL, Compans RW (1993) Cell fusion activity of the simian immunodeficiency virus envelope protein is modulated by the intracytoplasmic domain. Virology 197: 255–264

    PubMed  CAS  Google Scholar 

  • Roberts PC, Garten W, Klenk H-D (1993) Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. J Virol 67: 3048–3060

    PubMed  CAS  Google Scholar 

  • Roth MG, Srinivas RV, Compans RW (1983) Basolateral maturation of retroviruses in polarized epithelial cells. J Virol 45: 1065–1073

    PubMed  CAS  Google Scholar 

  • Roth RA, Pierce SB (1987) In vivo cross-linking of protein disulfide isomerase to immunoglobulins. Biochemistry 26: 4179–4182

    PubMed  CAS  Google Scholar 

  • Rothman JE (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes. Cell 59: 591–601

    PubMed  CAS  Google Scholar 

  • Salzwedel K, Johnston PB, Roberts SJ, Dubay JW, Hunter E (1993) Expression and characterization of glycophospholipid-anchored human immunodeficiency virus type 1 envelope glycoproteins. J Virol 67: 5279–5288

    PubMed  CAS  Google Scholar 

  • Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW (1992) Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69: 353–365

    PubMed  CAS  Google Scholar 

  • Schawaller M, Smith GE, Skehel JJ, Wiley DC (1989) Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV. Virology 172: 367–369

    PubMed  CAS  Google Scholar 

  • Schols D, Pauwels R, Desmyter J, De Clerq E (1992) Presence of class I histocompatibility DR proteins on the envelope of human immunodeficiency virus demonstrated by FACS analysis. Virology 189: 374–376

    PubMed  CAS  Google Scholar 

  • Schulz TF, Jameson BA, Lopalco L, Siccardi AG, Weiss RA, Moore JP (1992) Conserved structural features in the interaction between retroviral surface and transmembrane proteins? AIDS Res Human Retrovirus 8: 1571–1580

    Google Scholar 

  • Schweizer A, Matter K, Ketcham CM, Hauri H-P (1991) The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi. J Cell Biol 113: 45–54

    PubMed  CAS  Google Scholar 

  • Segal MS, Bye JM, Sambrook J, Gething M-J (1992) Disulfide bond formation during the folding of influenza virus hemagglutinin. J Cell Biol 118: 227–244

    PubMed  CAS  Google Scholar 

  • Shin J, Lee S, Strominger JL (1993) Translocation of TCRa chains into the lumen of the endoplasmic reticulum and their degradation. Science 259: 1901–1904

    Google Scholar 

  • Siezen RJ, Creemers JWM, Van de Ven WJM (1994) Homology modelling of the catalytic domain of human furin - a model for the eukaryotic subtilisin-like proprotein convertases. Eur J Biochem 222: 255–266

    CAS  Google Scholar 

  • Simon SM, Blobel G (1991) A protein-conducting channel in the endoplasmic reticulum. Cell 65: 371–380

    PubMed  CAS  Google Scholar 

  • Simon SM, Blobel G (1992) Signal peptides open protein-conducting channels inE. coli. Cell 69: 677–684

    PubMed  CAS  Google Scholar 

  • Singer SJ, Maher PA, Yaffe MP (1987) On the transfer of integral proteins into membranes. Proc Natl Acad Sci USA 84: 1960–1964

    PubMed  CAS  Google Scholar 

  • Smeekens SP, Montag AG, Thomas G, Albiges-Rizo C, Carroll R, Benig M, Phillips LA, Martin S, Ohagi S, Gardner P, et al. (1992) Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc Natl Acad Sci USA 89: 8822–8826

    PubMed  CAS  Google Scholar 

  • Spies CP, Compans RW (1994) Effects of cytoplasmic domain length on cell surface expression and syncytium-forming capacity of the simian immunodeficiency virus envelope glycoprotein. Virology 203: 8–19

    PubMed  CAS  Google Scholar 

  • Spies CP, Ritter GD Jr, Mulligan MJ, Compans RW (1994) Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein alters the conformation of the external domain. J Virol 68: 585–591

    PubMed  CAS  Google Scholar 

  • Srinivas SK, Srinivas RV, Anantharamaiah GM, Segrest JP, Compans RW (1992) Membrane interactions of synthetic peptides corresponding to amphipathic helical segments of the human immunodeficiency virus type-1 envelope glycoprotein. J Biol Chem 267: 7121–7127

    PubMed  CAS  Google Scholar 

  • Stein BS, Engleman EG (1990) Intracellular processing of the gp160 envelope precursor. J Biol Chem 265: 2640 - 2649

    PubMed  CAS  Google Scholar 

  • Steiner DF, Smeekens SP, Ohagi S, Chan SJ (1992) The new enzymology of precursor processing endoproteases. J Biol Chem 267: 23435–23438

    PubMed  CAS  Google Scholar 

  • Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11: 2407–2414

    Google Scholar 

  • Stirzaker SC, Both GW (1989) The signal peptide of the rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell 56: 741–747

    PubMed  CAS  Google Scholar 

  • Syu W-J, Lee W-R, Du B, Yu Q-C, Essex M, Lee T-H (1991) Role of conserved gp41 cysteine residues in the processing of human immunodeficiency virus envelope precursor and viral infectivity. J Virol 65: 6349–6352

    PubMed  CAS  Google Scholar 

  • Takahashi S, Kasai K, Hatsuzawa K, Kitamura N, Misumi Y, Ikehara Y, Murakami K, Nakayama K (1993) A mutation of furin causes the lack of precursor-processing activity in human colon carcinoma LoVo cells. Biochem Biophys Res Commun 195: 1019–1026

    Google Scholar 

  • Takemoto LJ, Fox CF, Jensen FC, Elder JH, Lemer RA (1978) Nearest-neighbor interactions of the major RNA tumor virus glycoprotein on murine cell surfaces. Proc Natl Acad Sci USA 75: 3644–3648

    PubMed  CAS  Google Scholar 

  • Tatu U, Braakman I, Helenius A (1993) Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells. EMBO J 12: 2151–2157

    Google Scholar 

  • Thomas DC, Brewer CB, Roth MG (1993) Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal critically dependent upon a tyrosine. J Biol Chem 268: 3313–3320

    PubMed  CAS  Google Scholar 

  • Thomas G, Thome BA, Thomas L, Allen RG, Hruby DE, Fuller R, Thorner J (1988) Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 241: 226–230

    PubMed  CAS  Google Scholar 

  • Thomas L, Cooper A, Bussey H, Thomas G (1990) Yeast KEX1 protease cleaves a prohormone processing intermediate in mammalian cells. J Biol Chem 265: 10821–10824

    PubMed  CAS  Google Scholar 

  • Thrift RN, Andrews DW, Walter P, Johnson AE (1991) A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation. J Cell Biol 112: 809–821

    PubMed  CAS  Google Scholar 

  • Tsai W-P, Oroszlan S (1988) Novel glycosylation pathways of retroviral envelope proteins identified with avian reticuloendotheliosis virus. J Virol 62: 3167–3174

    PubMed  CAS  Google Scholar 

  • Tschachler E, Buchow H, Gallo RC, Reitz MS Jr (1990) Functional contribution of cysteine residues to the human immunodeficiency virus type I envelope. J Virol 64: 2250–2259

    PubMed  CAS  Google Scholar 

  • Tucker SP, Srinivas RV, Compans RW (1991) Molecular domains involved in oligomerization of the Friend murine leukemia virus envelope glycoprotein. Virology 185: 710–720

    PubMed  CAS  Google Scholar 

  • Venable RM, Pastor RR, Brooks BR, Carson FW (1989) Theoretically determined three-dimensional structures for amphipathic segments of the HIV-1 gp41 envelope glycoprotein. AIDS Res Hum Retroviruses 5: 7–22

    PubMed  CAS  Google Scholar 

  • Veronese FM, DeVico AL, Copeland TD, Oroszlan S, Gallo RC, Sarngadharan MG (1985) Characterization of gp41 as the transmembrane protein encoded by the HTLV-III/LAV envelope gene. Science 229: 1402–1405

    Google Scholar 

  • Vile RG, Schulz TF, Danos OF, Collins MKL, Weiss RA (1991) A murine cell line producing HTLV-1 pseudotype virions carrying a selectable marker. Virology 180: 420–424

    PubMed  CAS  Google Scholar 

  • Vogel JP, Misra LM, Rose MD (1990) Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol 110: 1885–1895

    PubMed  CAS  Google Scholar 

  • von Heijne G (1985) Signal sequences: the limits of variation. J Mol Biol 184: 99–105

    Google Scholar 

  • von Heijne G (1986) Towards a comparative anatomy of N-terminal topogenic sequences. J Mol Biol 189: 239–242

    Google Scholar 

  • Walker JA, Molloy SS, Thomas G, Sakaguchi T, Yoshida T, Chambers TM, Kawaoka Y (1994) Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J Virol 68: 1213–1218

    PubMed  CAS  Google Scholar 

  • Wandinger-Ness A, Bennett MK, Antony C, Simons K (1990) Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J Cell Biol 111: 987–1000

    PubMed  CAS  Google Scholar 

  • Watanabe T, Nakagawa T, Ikemizu J, Nagahama M, Murakami K, Nakayama K (1992) Sequence equirements for precursor cleavage within the constitutive secretory pathway. J Biol Chem 267: 8270–8274

    PubMed  CAS  Google Scholar 

  • Watanabe T, Murakami K, Nakayama K (1993) Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway. FEBS Lett 320: 215–218

    PubMed  CAS  Google Scholar 

  • Weiss CD, White JM (1993) Characterization of stable Chinese hamster ovary cells expressing wildtype, secreted, and glycosylphosphatidylinositol-anchored human immunodeficiency virus type 1 envelope glycoprotein. J Virol 67: 7060–7066

    PubMed  CAS  Google Scholar 

  • Weiss CD, Levy JA, White JM (1990) Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. J Virol 64: 5674–5677

    PubMed  CAS  Google Scholar 

  • Weiss RA (1993) Cellular receptors and viral glycoproteins involved in retrovirus entry. In Levy J A.(ed) The retroviridae, vol 2. Plenum, New York, pp 1–108

    Google Scholar 

  • Weiss RA, Wong AL (1977) Phenotypic mixing between avian and mammalian RNA tumor viruses: I.Envelope pseudotypes of Rous sarcoma virus. Virology 76: 826–834

    Google Scholar 

  • Weiss RA, Boettiger D, Murphy HM (1977) Pseudotypes of avian sarcoma viruses with the envelope properties of vesicular stomatitis virus. Virology 76: 808–825

    PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1993) Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365: 185–188

    PubMed  CAS  Google Scholar 

  • Wild C, Oas T, McDanal C, Bolognesi D, Matthews T (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci USA 89: 10537–10541

    PubMed  CAS  Google Scholar 

  • Wild C, Dubay JW, Greenwell T, Baird T Jr, Oas TG, McDanal C, Hunter E, Matthews T (1994) Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc Natl Acad Sci USA 91: 12676–12680

    PubMed  CAS  Google Scholar 

  • Wilk T, Pfeiffer T, Bosch V (1992) Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. Virology 189: 167–177

    PubMed  CAS  Google Scholar 

  • Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD (1988) Biosynthesis, cleavage, and degradation of the human immunodeficiency syndrome virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci USA 85: 9580–9590

    PubMed  CAS  Google Scholar 

  • Wills JW, Srinivas RV, Hunter E (1984) Mutations of the Rous sarcoma virus env gene that affect the transport and subcellular location of the glycoprotein products. J Cell Biol 99: 2011–2023

    PubMed  CAS  Google Scholar 

  • Wilson C, Reitz MS, Okayama H, Eiden MV (1989) Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol 63: 2374–2378

    PubMed  CAS  Google Scholar 

  • Witte ON, Tsulamoto-Adey A, Weissman IL (1977) Cellular maturation of oncornavirus glycoproteins: topological arrangement of precursor and product forms in cellular membranes. Virology 76: 539–553

    PubMed  CAS  Google Scholar 

  • Yokode M, Pathak RK, Hammer RE, Brown MS, Goldstein JL, Anderson RGW (1992) Cytoplasmic sequence required for basolateral targeting of LDL receptor in livers of transgenic mice. J Cell Biol 117: 39–46

    PubMed  CAS  Google Scholar 

  • Young JA, Bates P, Willert K, Varmus HE (1990) Efficient incorporation of human CD4 into avian leukosis virus particles. Science 250: 1421–1423

    PubMed  CAS  Google Scholar 

  • Yu X, Yuan X, Matsuda Z, Lee T-H, Essex M (1992) The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66: 4966–4971

    PubMed  CAS  Google Scholar 

  • Yu X, Xin Y, McLane MF, Lee T-H, Essex M (1993) Mutations in the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein impair the incorporation of Env proteins into mature virions. J Virol 67: 213–221

    PubMed  CAS  Google Scholar 

  • Zavada J (1982) The pseudotypic paradox. J Gen Virol 63: 15–24

    PubMed  Google Scholar 

  • Zavadova Z, Zavada J, Weiss RA (1977) Unilateral phenotypic mixing of envelope antigens between togaviruses and vesicular stomatitis or avian RNA tumor virus. J Gen Virol 37: 557–567

    Google Scholar 

  • Zhu Z, Chen SSL, Huang AS (1990) Phenotypic mixing between human immunodeficiency virus and vesicular stomatitis virus or herpes simplex virus. J AIDS 3: 215–219

    CAS  Google Scholar 

  • Zingler K, Littman DR (1993) Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases Env incorporation into particles and fusogenicity and infectivity. J Virol 66: 2824–2831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Einfeld, D. (1996). Maturation and Assembly of Retroviral Glycoproteins. In: Kräusslich, HG. (eds) Morphogenesis and Maturation of Retroviruses. Current Topics in Microbiology and Immunology, vol 214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80145-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80145-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80147-1

  • Online ISBN: 978-3-642-80145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics