Skip to main content
Log in

Selective cloning of genes encoding RNase H from Salmonella typhimurium, Saccharomyces cerevisiae and Escherichia coli rnh mutant

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have cloned genes encoding RNase H from Escherichia coli rnh mutants, Salmonella typhimurium and Saccharomyces cerevisiae. Selection was accomplished by suppression of the temperature-sensitive growth phenotype of Escherichia coli strains containing the rnh-339::cat and either recB270 (Ts) or recC271 (Ts) mutations. RNases H from E. coli and S. typhimurium contained 155 amino acid residues and differed at only 11 positions. The S. cerevisiae and E. coli RNases H were about 30% homologous. A comparison of the amino acid sequences of several RNases H from cellular and retroviral sources revealed some strongly conserved regions as well as variable regions; the carboxyl-terminus was particularly variable. The overlapping, divergent promoter gene organization found in E. coli was observed to be present in S. typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Cox EC, Horner DL (1986) DNA sequence and coding properties of mutD(dnaQ) a dominant Escherichia coli mutator gene. J Mol Biol 190:113–117

    Google Scholar 

  • Hansen J, Schulze T, Mellert W, Welling K (1988) Identification and characterizaton of HIV-specific RNase H by monoclonal antibody. EMBO J 7:239–243

    Google Scholar 

  • Henikoff S (1984) Undirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Google Scholar 

  • Herr W (1984) Nucleotide sequence of AKV murine leukemia virus. J Virol 49:471–478

    Google Scholar 

  • Itaya M, Crouch R (1991a) A combination of RNase H (rnh) and recBCD or sbcB mutations in Escherichia coli K12 adversely affect growth. Mol Gen Genet 227:424–432

    Google Scholar 

  • Itaya M, Crouch R (1991b) Correlation of activity with phenotypes of Escherichia coli partial function mutants of rnh, the gene encoding RNase H. Mol Gen Genet 227:433–437

    Google Scholar 

  • Johnson MS, McClure MA, Feng DF, Gray J, Doolittle RF (1986) Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc Natl Acad Sci USA 83:7648–7652

    Google Scholar 

  • Kanaya S, Crouch RJ (1983a) DNA sequence of the gene coding for Escherichia coli RNase H. J Biol Chem 258:1276–1281

    Google Scholar 

  • Kanaya S, Crouch RJ (1983b) Low levels of RNase H activity in Escherichia coli FB2 rnh result from a single-base change in the structural gene of RNase H. J Bacteriol 154:1021–1026

    Google Scholar 

  • Kanaya S, Crouch RJ (1984) The rnh gene is essential for growth of Escherichia coli. Proc Natl Acad Sci USA 81:3447–3451

    Google Scholar 

  • Kanaya S, Kohara A, Miura Y, Sekiguchi A, Iwai S, Inoue H, Ohtsuka E, Ikehara M (1990) Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis. J Biol Chem 265:4615–4621

    Google Scholar 

  • Karwan R, Wintersberger U (1988) In addition to RNase H (70) two other proteins of Saccharomyces cerevisiae exhibit ribonuclease H activity. J Biol Chem 263:14970–14977

    Google Scholar 

  • Katayanagi K, Miyagawa M, Matsushima M, Ishikawa S, Kanaya S, Ikehara M, Matsuzaki T, Morikawa K (1990) Three-dimensional structure of ribonuclease H from Escherichia coli. Nature 347:306–309

    Google Scholar 

  • Kogoma T (1984) Absence of RNase H allows replication of pBR322 in Escherichia coli mutants lacking DNA polymerase I. Proc Natl Acad Sci USA 81:7845–7849

    Google Scholar 

  • Kotewicz ML, Sampson CM, D'Alessio JM, Gerard GF (1988) Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res 16:265–277

    Google Scholar 

  • Kushner SR (1974a) In vivo studies of temperature-sensitive recB and recC mutants. J Bacteriol 120:1213–1218

    Google Scholar 

  • Kushner SR (1974b) Differential thermolability of exonuclease and endonuclease activities of the recBC nuclease isolated from thermosensitive recB and recC mutants. J Bacteriol 120:1219–1222

    Google Scholar 

  • Levin JG, Crouch RJ, Post K, Hu SC, McKelvin D, Zweig M, Court DL, Gerwin B (1988) Functional organization of the murine leukemia virus reverse transcriptase: characterization of a bacterially expressed AKR DNA polymerase deficient in RNase H activity. J Virol 62:4376–4380

    Google Scholar 

  • Maki H, Horiuchi T, Sekiguchi M (1983) Structure and expression of the dnaQ mutator and the RNase H genes of Escherichia coli: overlap of the promoter regions. Proc Natl Acad Sci USA 80:7137–7141

    Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Marmur J (1961) A procedure for isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    Google Scholar 

  • Mellor J, Kingsman AJ, Kingsman SM (1986) Ty, an endogenous retrovirus of yeast? Yeast 2:145–152

    Google Scholar 

  • Mortimer RK, Hawthorne DC (1973) Genetics 74:33–54

    Google Scholar 

  • Nasmyth KA, Tatchell K (1980) The structure of transposable yeast mating type loci. Cell 19:753–764

    Google Scholar 

  • Nomura T, Aiba H, Ishihama A (1985) Transcriptional organization of the convergent overlapping dnaQ-rnh genes of Escherichia coli. J Biol Chem 260:7122–7125

    Google Scholar 

  • Ogawa T, Okazaki T (1984) Function of RNase H in DNA replication revealed by RNase H defective mutants of Escherichia coli. Mol Gen Genet 193:231–237

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Quinones A, Kucherer C, Piechocki R, Messer W (1987) Reduced transcription of the rnh gene in Escherichia coli mutants expressing the SOS regulon constitutively. Mol Gen Genet 206:95–100

    Google Scholar 

  • Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K, Ivanoff L, Petteway SR Jr, Pearson ML, Lautenberger JA, Papas TS, Ghrayeb J, Chang NT, Gallo RC, Wong-Staal F (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313:277–284

    Google Scholar 

  • Repaske R, Hartley JW, Kavlick MF, O'Neill RR, Austin JB (1989) Inhibition of RNase H activity and viral replication by single mutations in the 3′ region of Moloney murine leukemia virus reverse transcriptase. J Virol 63:1460–1464

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schwartz DE, Tizard R, Gilbert W (1983) Nucleotide sequence of Rous sarcoma virus. Cell 32:853–869

    Google Scholar 

  • Shinnick TM, Lemer RA, Sutcliffe JG (1981) Nucleotide sequence of Moloney murine leukaemia virus. Nature 293:543–548

    Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Tanese N, Goff SP (1988) Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities. Proc Natl Acad Sci USA 85:1777–1781

    Google Scholar 

  • Tomizawa J, Ogawa H (1972) Structural genes of ATP-dependent deoxyribonuclease of Escherichia coli. Nature New Biol 239:14–16

    Google Scholar 

  • Traglia HM, Atkinson NS, Hopper AK (1989) Structural and functional analyses of Saccharomyces cerevisiae wild-type and mutant RNA1 genes. Mol Cell Biol 9:2989–2999

    Google Scholar 

  • Warmington JR, Waring RB, Newlon CS, Indge KJ, Oliver SG (1985) Nucleotide sequence characterization of Ty 1–17, a class II transposon from yeast. Nucleic Acids Res 13:6679–6693

    Google Scholar 

  • Wyers F, Sentenac A, Fromageot P (1973) Role of DNA-RNA hybrids in eukaryotes. Ribonuclease H in yeast. Eur J Biochem 35:270–281

    Google Scholar 

  • Yang Y, Hendrickson WA, Crouch RJ, Satow Y (1990) Structure of ribonuclease H at 2Å resolution by MAD analysis of the selenomethionyl protein. Science 249:1398–1405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.R. Smith

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itaya, M., McKelvin, D., Chatterjie, S.K. et al. Selective cloning of genes encoding RNase H from Salmonella typhimurium, Saccharomyces cerevisiae and Escherichia coli rnh mutant. Molec. Gen. Genet. 227, 438–445 (1991). https://doi.org/10.1007/BF00273935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00273935

Key words

Navigation